 Johnson–Nyquist noise

Johnson–Nyquist noise (thermal noise, Johnson noise, or Nyquist noise) is the electronic noise generated by the thermal agitation of the charge carriers (usually the electrons) inside an electrical conductor at equilibrium, which happens regardless of any applied voltage. The generic, statistical physical derivation of this noise is called the fluctuationdissipation theorem, where generalized impedance or generalized susceptibility is used to characterize the medium.
Thermal noise in an idealistic resistor is approximately white, meaning that the power spectral density is nearly constant throughout the frequency spectrum (however see the section below on extremely high frequencies). Additionally, the amplitude of the signal has very nearly a Gaussian probability density function.^{[1]}
Contents
History
This type of noise was first measured by John B. Johnson at Bell Labs in 1926.^{[2]}^{[3]} He described his findings to Harry Nyquist, also at Bell Labs, who was able to explain the results.^{[4]}
Noise voltage and power
Thermal noise is distinct from shot noise, which consists of additional current fluctuations that occur when a voltage is applied and a macroscopic current starts to flow. For the general case, the above definition applies to charge carriers in any type of conducting medium (e.g. ions in an electrolyte), not just resistors. It can be modeled by a voltage source representing the noise of the nonideal resistor in series with an ideal noise free resistor.
The onesided power spectral density, or voltage variance (mean square) per hertz of bandwidth, is given by
where k_{B} is Boltzmann's constant in joules per kelvin, T is the resistor's absolute temperature in kelvins, and R is the resistor value in ohms (Ω). Use this equation for quick calculation, at room temperature:
For example, a 1 kΩ resistor at a temperature of 300 K has
For a given bandwidth, the root mean square (RMS) of the voltage, v_{n}, is given by
where Δf is the bandwidth in hertz over which the noise is measured. For a 1 kΩ resistor at room temperature and a 10 kHz bandwidth, the RMS noise voltage is 400 nV.^{[5]} A useful rule of thumb to remember is that 50 Ω at 1 Hz bandwidth correspond to 1 nV noise at room temperature.
A resistor in a short circuit dissipates a noise power of
The noise generated at the resistor can transfer to the remaining circuit; the maximum noise power transfer happens with impedance matching when the Thévenin equivalent resistance of the remaining circuit is equal to the noise generating resistance. In this case each one of the two participating resistors dissipates noise in both itself and in the other resistor. Since only half of the source voltage drops across any one of these resistors, the resulting noise power is given by
where P is the thermal noise power in watts. Notice that this is independent of the noise generating resistance.
Noise current
The noise source can also be modeled by a current source in parallel with the resistor by taking the Norton equivalent that corresponds simply to divide by R. This gives the root mean square value of the current source as:
Thermal noise is intrinsic to all resistors and is not a sign of poor design or manufacture, although resistors may also have excess noise.
Noise power in decibels
Signal power is often measured in dBm (decibels relative to 1 milliwatt). From the equation above, noise power in a resistor at room temperature, in dBm, is then:
where the factor of 1000 is present because the power is given in milliwatts, rather than watts. This equation can be simplified by separating the constant parts from the bandwidth:
which is more commonly seen approximated as:
Noise power at different bandwidths is then simple to calculate:


Bandwidth (Δf) Thermal noise power Notes 1 Hz −174 dBm 10 Hz −164 dBm 100 Hz −154 dBm 1 kHz −144 dBm 10 kHz −134 dBm FM channel of 2way radio 100 kHz −124 dBm 180 kHz −121.45 dBm One LTE resource block 200 kHz −120.98 dBm One GSM channel (ARFCN) 1 MHz −114 dBm 2 MHz −111 dBm Commercial GPS channel 6 MHz −106 dBm Analog television channel 20 MHz −101 dBm WLAN 802.11 channel

Thermal noise on capacitors
Thermal noise on capacitors is referred to as kTC noise. Thermal noise in an RC circuit has an unusually simple expression, as the value of the resistance (R) drops out of the equation. This is because higher R contributes to more filtering as well as to more noise. The noise bandwidth of the RC circuit is 1/(4RC),^{[6]} which can substituted into the above formula to eliminate R. The meansquare and RMS noise voltage generated in such a filter are:^{[7]}
Thermal noise accounts for 100% of kTC noise, whether it is attributed to the resistance or to the capacitance.
In the extreme case of the reset noise left on a capacitor by opening an ideal switch, the resistance is infinite, yet the formula still applies; however, now the RMS must be interpreted not as a time average, but as an average over many such reset events, since the voltage is constant when the bandwidth is zero. In this sense, the Johnson noise of an RC circuit can be seen to be inherent, an effect of the thermodynamic distribution of the number of electrons on the capacitor, even without the involvement of a resistor.
The noise is not caused by the capacitor itself, but by the thermodynamic equilibrium of the amount of charge on the capacitor. Once the capacitor is disconnected from a conducting circuit, the thermodynamic fluctuation is frozen at a random value with standard deviation as given above.
The reset noise of capacitive sensors is often a limiting noise source, for example in image sensors. As an alternative to the voltage noise, the reset noise on the capacitor can also be quantified as the electrical charge standard deviation, as
Since the charge variance is k_{B}TC, this noise is often called kTC noise.
Any system in thermal equilibrium has state variables with a mean energy of kT/2 per degree of freedom. Using the formula for energy on a capacitor (E = ½CV^{2}), mean noise energy on a capacitor can be seen to also be ½C(kT/C), or also kT/2. Thermal noise on a capacitor can be derived from this relationship, without consideration of resistance.
The kTC noise is the dominant noise source at small capacitors.


Noise of capacitors at 300 K Capacitance Electrons 1 fF 2 mV 12.5 e^{–} 10 fF 640 µV 40 e^{–} 100 fF 200 µV 125 e^{–} 1 pF 64 µV 400 e^{–} 10 pF 20 µV 1250 e^{–} 100 pF 6.4 µV 4000 e^{–} 1 nF 2 µV 12500 e^{–}

Noise at very high frequencies
The above equations are good approximations at any practical radio frequency in use (i.e. frequencies below about 80 gigahertz). In the most general case, which includes up to optical frequencies, the power spectral density of the voltage across the resistor R, in V^{2}/Hz is given by^{[8]}:
where f is the frequency, h Planck's constant, k_{B} Boltzmann constant and T the temperature in kelvins. If the frequency is low enough, that means:
(this assumption is valid until few terahertz at room temperature) then the exponential can be expressed in terms of its Taylor series. The relationship then becomes:
In general, both R and T depend on frequency. In order to know the total noise it is enough to integrate over all the bandwidth. Since the signal is real, it is possible to integrate over only the positive frequencies, then multiply by 2. Assuming that R and T are constants over all the bandwidth Δf, then the root mean square (RMS) value of the voltage across a resistor due to thermal noise is given by
that is, the same formula as above.
See also
 Fluctuationdissipation theorem
 Shot noise
 1/f noise
 Langevin equation
References
 ^ Mancini, Ron; others (August 2002). "Op Amps For Everyone" (PDF). Application Notes. Texas Instruments. pp. p. 148. http://focus.ti.com/lit/an/slod006b/slod006b.pdf. Retrieved 20061206. "Thermal noise and shot noise (see below) have Gaussian probability density functions. The other forms of noise do not."
 ^ "Proceedings of the American Physical Society: Minutes of the Philadelphia Meeting December 28, 29, 30, 1926", Phys. Rev. 29, pp. 367368 (1927) – a February 1927 publication of an abstract for a paper  entitled "Thermal agitation of electricity in conductors"  presented by Johnson during the December 1926 APS Annual Meeting
 ^ J. Johnson, "Thermal Agitation of Electricity in Conductors", Phys. Rev. 32, 97 (1928) – details of the experiment
 ^ H. Nyquist, "Thermal Agitation of Electric Charge in Conductors", Phys. Rev. 32, 110 (1928) – the theory
 ^ Google Calculator result for 1 kΩ room temperature 10 kHz bandwidth
 ^ Kent H. Lundberg, See pdf, page 10: http://web.mit.edu/klund/www/papers/UNP_noise.pdf
 ^ R. Sarpeshkar, T. Delbruck, and C. A. Mead, "White noise in MOS transistors and resistors", IEEE Circuits Devices Mag., pp. 23–29, Nov. 1993.
 ^ L.B. Kish, "Stealth communication: Zeropower classical communication, zeroquantum quantum communication and environmentalnoise communication", Applied Physics Lett. 87 (2005), Art. No. 234109; http://arxiv.org/abs/physics/0508135
This article incorporates public domain material from the General Services Administration document "Federal Standard 1037C" (in support of MILSTD188).
External links
 Amplifier noise in RF systems
 Thermal noise (undergraduate) with detailed math
 JohnsonNyquist noise or thermal noise calculator — volts and dB
 Thoughts about Image Calibration for low dark current and Amateur CCD Cameras to increase SignalToNoise Ratio
 Derivation of the Nyquist relation using a random electric field, H. Sonoda
Noise (in physics and telecommunications) General Noise in... Class of noise Additive white Gaussian noise (AWGN) · Atmospheric noise · Background noise · Brownian noise · Burst noise · Cosmic noise · Flicker noise · Gaussian noise · Grey noise · Jitter · Johnson–Nyquist noise · Pink noise · Quantization error (or q. noise) · Shot noise · White noiseEngineering terms Ratios Carriertonoise ratio (C/N) · Carriertoreceiver noise density (C/kT) · dBrnC · Eb/N0 (energy per bit to noise density) · Es/N0 (energy per symbol to noise density) · Modulation error ratio (MER) · Signal, noise and distortion (SINAD) · Signaltointerference ratio (S/I) · Signaltonoise ratio (S/N, SNR) · Signal to noise ratio (imaging) · Signaltonoise plus interference (SNIR) · Signaltoquantizationnoise ratio (SQNR)Related topics Categories: Noise
 Electronics terms
 Electrical engineering
 Electronic engineering
 Electrical parameters
 Radar signal processing

Wikimedia Foundation. 2010.
См. также в других словарях:
JohnsonNyquistRauschen — Wärmerauschen, thermisches Rauschen, Widerstandsrauschen, Nyquist Rauschen, Johnson Rauschen oder Johnson Nyquist Rauschen genannt, ist ein weitgehend weißes Rauschen, das aus der thermischen Bewegung der Ladungsträger in elektrischen… … Deutsch Wikipedia
Johnson–Nyquist Rauschen — Wärmerauschen, thermisches Rauschen, Widerstandsrauschen, Nyquist Rauschen, Johnson Rauschen oder Johnson Nyquist Rauschen genannt, ist ein weitgehend weißes Rauschen, das aus der thermischen Bewegung der Ladungsträger in elektrischen… … Deutsch Wikipedia
Ruido de JohnsonNyquist — Saltar a navegación, búsqueda El ruido de Johnson–Nyquist (ruido térmico, ruido de Johnson, o ruido de Nyquist) se genera por la agitación térmica de los portadores de carga (generalmente electrones dentro de un conductor) en equilibrio, lo que… … Wikipedia Español
Nyquist — is a surname of Swedish and Norwegian origin which may refer to: People Arild Nyquist (1937–2004), Norwegian novelist, lyricist, writer and musician Harry Nyquist (1889–1976), Swedish American engineer Kari Nyquist (born 1918), Norwegian ceramist … Wikipedia
Noise shaping — is a technique typically used in digital audio, image, and video processing, usually in combination with dithering, as part of the process of quantization or bit depth reduction of a digital signal. Its purpose is to increase the apparent signal… … Wikipedia
Noise figure — (NF) is a measure of degradation of the signal to noise ratio (SNR), caused by components in a radio frequency (RF) signal chain. The noise figure is defined as the ratio of the output noise power of a device to the portion thereof attributable… … Wikipedia
Noise (audio) — Noise in audio, recording, and broadcast systems refers to the residual low level sound (usually hiss and hum) that is heard in quiet periods of a programme. In audio engineering, it can refer either to the acoustic noise from loudspeakers, or to … Wikipedia
Noise measurement — is carried out in various fields. In acoustics, it can be for the purpose of measuring environmental noise, or part of a test procedure using white noise, or some other specialised form of test signal. In electronics it relates to the sensitivity … Wikipedia
Noise (electronics) — Electronic noise [1] is a random fluctuation in an electrical signal, a characteristic of all electronic circuits. Noise generated by electronic devices varies greatly, as it can be produced by several different effects. Thermal noise is… … Wikipedia
Noise temperature — In electronics, noise temperature is one way of expressing the level of available noise power introduced by a component or source. The power spectral density of the noise is expressed in terms of the temperature (in kelvins) that would produce… … Wikipedia