Nikolay Bogolyubov

Nikolay Bogolyubov
Nikolay Nikolaevich Bogolyubov

Born 21 August 1909(1909-08-21)
Nizhny Novgorod, Russia
Died 13 February 1992(1992-02-13) (aged 82)
Moscow, Russia
Nationality Russian
Fields Theoretical physics, mathematical physics, mathematics
Institutions Kiev University
Steklov Institute of Mathematics
Lomonosov Moscow State University
Joint Institute for Nuclear Research
Alma mater Academy of Science of Ukrainian SSR
Moscow State University
Doctoral advisor Nikolay Krylov
Doctoral students Dmitry Zubarev
Yurii Mitropolskiy
Sergei Tyablikov
Dmitry Shirkov
Known for

significant contribution to nonlinear mechanics, quantum field theory, statistical mechanics, superconductivity, superfluidity;

Notable awards Stalin Prize (1947, 1953)
USSR State Prize (1984)
Lenin Prize (1958)
Heineman Prize (1966)
Hero of Socialist Labor (1969, 1979)
Max Planck Medal (1973)
Lomonosov Gold Medal (1985)
Dirac Medal (1992)
Notes
a close friend of Pakistani nuclear physicist dr. Abdullah Sadiq

Nikolay Nikolaevich Bogolyubov (another spelling Bogoliubov, Russian: Никола́й Никола́евич Боголю́бов, Ukrainian: Микола Миколайович Боголюбов; 21 August 1909, Nizhny Novgorod – 13 February 1992, Moscow) was a Russian and Ukrainian Soviet mathematician and theoretical physicist known for a significant contribution to quantum field theory, classical and quantum statistical mechanics, and to the theory of dynamical systems; a recipient of the Dirac Prize (1992).

Contents

Biography

Early life (1909–1921)

Nikolay Bogolyubov was born on 21 August 1909 in Nizhny Novgorod, Russia, in the family of a priest of Russian Orthodox Church, teacher of theology, psychology and philosophy Nikolay Mikhailovich Bogolyubov and Ol'ga Nikolaevna, teacher of music. The Soviet Union regulations issued soon after the October Revolution in 1917 did not allow for children of priests to obtain a good education, and in 1921 the family of Nikolay Bogolyubov moved to Kiev, where these regulations did not work.

Kiev (1921–?)

In Kiev Nikolay Bogolyubov began to actively study physics and mathematics. He attended research seminars in Kiev University and soon started to work under the supervision of a famous mathematician Nikolay Krylov. In 1924, at the age of 13, Nikolay Bogolyubov wrote his first published scientific paper On the behavior of solutions of linear differential equations at infinity. In 1925 he entered Ph.D. program at the Academy of Sciences of Ukrainian SSR and obtained the degree of Kandidat Nauk (Candidat of Sciences, equivalent to Ph.D.) in 1928, at the age of 19, with the Ph.D. thesis On direct methods of variational calculus. In 1930, at the age of 21, he obtained the degree of Doktor nauk (Doctor of Sciences, equivalent to Habilitation), the highest degree in the Soviet Union, which requires to make a significant independent contribution to the science after Ph.D.

This early period of Bogolyubov's work in science was concerned with such mathematical problems as direct methods of the calculus of variations, the theory of almost periodic functions, methods of approximate solution of differential equations, and dynamical systems. This earlier research had already earned him wide recognition. One of his essays was awarded the Bologna Academy of Sciences Prize in 1930, and the author was awarded the erudite degree of doctor of mathematics '. This was the period when the great scientific rise of the young Nikolai Bogolyubov began, later producing new multiple scientific trends in modern mathematics, physics, and mechanics.

Since 1931, Krylov and Bogolyubov worked together on the problems of nonlinear mechanics and nonlinear oscillations. They were the key figures in the "Kiev school of nonlinear oscillation research", where their cooperation resulted in the paper "On the quasiperiodic solutions of the equations of nonlinear mechanics" (1934) and the book Introduction to Nonlinear Mechanics (1937; translated to English in 1947) leading to a creation of a large field of non-linear mechanics.

And this can explain, as the authors believe, the need to shape the collection of problems of non-linear perturbation theory into a special science, which could be named NON-LINEAR MECHANICS.

N. M. Krylov and N. N. Bogolyubov, New methods in non-linear mechanics, ONTI GTTI, Moscow-Leningrad, 1934

Distinctive features of the Kiev School approach included an emphasis on the computation of solutions (not just a proof of its existence), approximations of periodic solutions, use of the invariant manifolds in the phase space, and applications of a single unified approach to many different problems. From a control engineering point of view, the key achievement of the Kiev School was the development by Krylov and Bogolyubov of the describing function method for the analysis of nonlinear control problems.

In the period 1928—1973, Nikolay Bogolyubov worked in the Institute for Theoretical Physics of the National Academy of Sciences of Ukraine holding the position of the Director of the institute since 1965. He lectured in the Kiev University in the period 1936—1959.

In evacuation (1941–1943)

After the German attack against the Soviet Union on 22 June 1941 (beginning of the Great Patriotic War), most institutes and universities from west part of Russia were evacuated into east regions far from the battle lines. Nikolay Bogolyubov moved to Ufa, where he became Head of the Departments of Mathematical Analysis at Ufa State Aviation Technical University and at Ufa Pedagogical Institute, remaining on these positions during the period of July 1941 – August 1943.

Moscow (1943–?)

In autumn 1943, Bogolyubov came from evacuation to Moscow and on 1 November 1943 he accepted a position in the Department of Theoretical Physics at the Moscow State University (MSU). At that time the Head of the Department was Anatoly Vlasov (for a short period in 1944 the Head of the Department was Vladimir Fock). Theoretical physicists working in the department in that period included Dmitry Ivanenko, Arsenij Sokolov, and other famous physicists.

In the period 1943–1946, Bogolyubov's resesarch was essentially concerned with the theory of stochastic processes and asymptotic methods. In his work "?" a simple example of an anharmonic oscillator evolving under the force of the form as a superposition of incoherent sinusoidal oscillations with continuous spectrum was used to show that depending on a specific approximation time scale the evolution of the system can be either deterministic, or a stochastic process satisfying Fokker-Planck equation, or even a process which is neither deterministic nor stochastic. In other words, he showed that depending on the choice of the time scale for the corresponding approximations the same stochastic process can be regarded as both dynamical and Markovian, and in the general case as a non-Markov process. This work was the first to introduce the notion of time hierarchy in non-equilibrium statistical physics which then became the key concept in all further development of the statistical theory of irreversible processes.

In 1945, Bogolyubov proved a fundamental theorem on the existence and basic properties of a one-parameter integral manifold for a system of non-linear differential equations. He investigated periodic and quasi-periodic solutions lying on a one-dimensional manifold, thus forming the foundation for a new method of non-linear mechanics, the method of integral manifolds.

In 1946, he published in JETP two works on equilibrium and non-equilibrium statistical mechanics which became the essence of his fundamental monograph Problems of dynamical theory in statistical physics (Moscow, 1946).

On 26 January 1953, Nikolay Bogolyubov became the Head of the Department of Theoretical Physics at MSU, after Anatoly Vlasov decided to leave the position on January 2, 1953.

Steklov Institute (1947–?)

In 1947, Nikolay Bogolyubov organized and became the Head of the Department of Theoretical Physics at the Steklov Mathematical Institute. In 1969, the Department of Theoretical Physics was separated into the Departments of Mathematical Physics (Head Vasily Vladimirov), of Statistical Mechanics, and of Quantum Field Theory (Head Mikhail Polivanov). While working in the Steklov Institute, Nikolay Bogolyubov and his school contributed to science with many important works including works on renormalization theory, renormalization group, axiomatic S-matrix theory, and works on the theory of dispersion relations.

In the late 1940s and 1950s, Bogoliubov worked on the theory of superfluidity and superconductivity, where he developed the method of BBGKY hierarchy for a derivation of kinetic equations, formulated microscopic theory of superfluidity, and made other essential contributions. Later he worked on quantum field theory, where introduced the Bogoliubov transformation, formulated and proved the Bogoliubov's edge-of-the-wedge theorem and Bogoliubov-Parasyuk theorem (with Ostap Parasyuk), and obtained other significant results. In the 1960s his attention turned to the quark model of hadrons; in 1965 he was among the first scientists to study the new quantum number color charge.

In 1946, Nikolay Bogoliubow was elected as a Corresponding Member of the USSR Academy of Sciences. In 1948, he became Academician of the National Academy of Sciences of Ukraine and in 1953 Academician of the USSR Academy of Sciences.

Dubna (1956–1992)

Since 1956, he worked in the Joint Institute for Nuclear Research (JINR), Dubna, Russia, where he was a founder (together with Dmitry Blokhintsev) and the first director of the Laboratory of Theoretical Physics. This laboratory, where Nikolay Bogolyubov worked for a long time, has traditionally been the home of the prominent Russian schools in quantum field theory, theoretical nuclear physics, statistical physics, and nonlinear mechanics. Nikolay Bogolyubov was Director of the JINR in the period 1966—1988.

Family

His son Nikolay Boglyubov (jr) is a theoretical physicist working in the fields of mathematical physics and statistical mechanics.

Students

Nikolay Bogoliubov was a scientific supervisor[1] of Yurii Mitropolskiy, Dmitry Shirkov, Selim Krein, Iosif Gihman, Tofik Mamedov, Kirill Gurov, Mikhail Polivanov, Naftul Polsky, Galina Biryuk, Sergei Tyablikov, Dmitry Zubarev, Vladimir Kadyshevsky, and many other students. His method of teaching, based on creation of a warm atmosphere, politeness and kindness, is famous in Russia and is known as the "Bogoliubov approach".

Awards

Nikolay Bogolyubov was a recipient of various high USSR honors and international awards, including

Joint Institute for Nuclear Research awards two prizes in memory of Nikolay Bogolyubov: The Bogolyubov Prize for scientists with outstanding contribution to theoretical physics and applied mathematics and the Bogolyubov Prize for young scientists. National Academy of Sciences of Ukraine awards the Bogolyubov Prize for scientists with outstanding contribution to theoretical physics and applied mathematics.

The central street of Dubna is named in the memory of Nikolay Bogolyubov as Bogolyubov prospect (Russian: проспект Боголюбова).

Bogolyubov year

In 2009, the 100th anniversary of the birth of Nikolay Bogolyubov was celebrated with two conferences organized in the memory of Nikolay Bogolyubov in Russia and Ukraine:

  1. International Bogolyubov Conference: Problems of Theoretical and Mathematical Physics 21–27 August, Moscow-Dubna, Russia.
  2. Bogolyubov Kyiv Conference: Modern Problems of Theoretical and Mathematical Physics 15–18 September, Kiev, Ukraine.

Research

Fundamental works of Nikolay Bogoliubov were devoted to asymptotic methods of nonlinear mechanics, quantum field theory, statistical field theory, variational calculus, approximation methods in mathematical analysis, equations of mathematical physics, theory of stability, theory of dynamical systems, and to many other areas.

He built a new theory of scattering matrices, formulated the concept of microscopical causality, obtained important results in quantum electrodynamics, and investigated on the basis of the edge-of-the-wedge theorem the dispersion relations in elementary particle physics. He suggested a new synthesis of the Bohr theory of quasiperiodic functions and developed methods for asymptotic integration of nonlinear differential equations which describe oscillating processes.

Mathematics and non-linear mechanics

  • In 1932—1943, in the early stage of his career, he worked in collaboration with Nikolay Krylov on mathematical problems of nonlinear mechanics and developed mathematical methods for asymptotic integration of non-linear differential equations. He also applied these methods to problems of statistical mechanics.
  • In 1937, jointly with Nikolay Krylov he proved the Krylov-Bogoliubov theorems.[2]
  • In 1956, at the International Conference on Theoretical Physics in Seattle, USA (September, 1956), he presented the formulation and the first proof of the edge-of-the-wedge theorem. This theorem in the theory of functions of several complex variables has important implications to the dispersion relations in elementary particle physics.

Statistical mechanics

  • 1939 Jointly with Nikolay Krylov gave the first consistent microscopic derivation of the Fokker-Planck equation in the single scheme of classical and quantum mechanics.[3]
  • 1945 Suggested the idea of hierarchy of relaxation times, which is significant for statistical theory of irreversible processes.
  • 1946 Developed a general method for a microscopic derivation of kinetic equations for classical systems.[4][5] The method was based on the hierarhy of equations for multi-particle distribution functions known now as Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy.
  • 1947 Jointly with K. P. Gurov extended this method to the derivation of kinetic equations for quantum systems on the basis of the quantum BBGKY hierarchy.[6]
  • 1947—1948 Introduced kinetic equations in the theory of superfluidity,[7][8] computed the excitation spectrum for a weakly imperfect Bose gas, showed that this spectrum has the same properties as spectrum of Helium II, and used this analogy for a theoretical description of superfluidity of Helium II.
  • 1958 Formulated a microscopic theory of superconductivity[9] and established an analogy between superconductivity and superfluidity phenomena; this contribution was discussed in details in the book A New Method in the Theory of Superconductivity (co-authors V. V. Tolmachev and D. V. Shirkov, Moscow, Academy of Sciences Press, 1958).

Quantum theory

  • 1955 Developed an axiomatic theory for scattering matrix (S—matrix) in quantum field theory and introduced the causality condition for S—matrix in terms of variational derivatives.
  • 1955 Jointly with Dmitry Shirkov developed the renormalization group method.
  • 1955 Jointly with Ostap Parasyuk proved the theorem on the finiteness and uniqueness (for renormalizable theories) of the scattering matrix in any order of perturbation theory (Bogoliubov-Parasyuk theorem) and developed a procedure (R-operation) for a practical subtraction of singularities in quantum field theory.[10][11]
  • 1965 Jointly with Boris Struminsky and Albert Tavchelidze and independently of Moo-Young Han, Yoichiro Nambu and Oscar W. Greenberg suggested a triplet quark model and introduced a new quantum degree of freedom (later called as color charge) for quarks.[12]
  • Suggested a first proof of dispersion relations in quantum field theory.

Publications

Books

Mathematics and Non-linear Mechanics:

  1. N. M. Krylov and N. N. Bogoliubov (1934): On various formal expansions of non-linear mechanics. Kiev, Izdat. Zagal'noukr. Akad. Nauk. (Ukrainian)
  2. N. M. Krylov and N. N. Bogoliubov (1947): Introduction to Nonlinear Mechanics. Princeton, Princeton University Press.
  3. N. N. Bogoliubov, Y. A. Mitropolsky (1961): Asymptotic Methods in the Theory of Non-Linear Oscillations. New York, Gordon and Breach.

Statistical Mechanics:

  1. N. N. Bogoliubov (1945): On Some Statistical Methods in Mathematical Physics. Kyiv (Russian).
  2. N. N. Bogoliubov, V. V. Tolmachev, D. V. Shirkov (1959): A New Method in the Theory of Superconductivity. New York, Consultants Bureau.
  3. N. N. Bogoliubov (1960): Problems of Dynamic Theory in Statistical Physics. Oak Ridge, Tenn., Technical Information Service.
  4. N. N. Bogoliubov (1967—1970): Lectures on Quantum Statistics. Problems of Statistical Mechanics of Quantum Systems. New York, Gordon and Breach.
  5. N. N. Bogolubov and N. N. Bogolubov, Jnr. (1992): Introduction to Quantum Statistical Mechanics. Gordon and Breach. ISBN 2-88124-879-9.

Quantum Field Theory:

  1. N. N. Bogoliubov, B. V. Medvedev, M. K. Polivanov (1958): Problems in the Theory of Dispersion Relations. Institute for Advanced Study, Princeton.
  2. N. N. Bogoliubov, D. V. Shirkov (1959): The Theory of Quantized Fields. New York, Interscience. The first text-book on the renormalization group theory.
  3. N. N. Bogoliubov, A. A. Logunov and I. T. Todorov (1975): Introduction to Axiomatic Quantum Field Theory. Reading, Mass.: W. A. Benjamin, Advanced Book Program. ISBN 978-0-8053-0982-9. ISBN 0-8053-0982-9.
  4. N. N. Bogoliubov, D. V. Shirkov (1980): Introduction to the Theory of Quantized Field. John Wiley & Sons Inc; 3rd edition. ISBN 0-471-04223-4. ISBN 978-0-471-04223-5.
  5. N. N. Bogoliubov, D. V. Shirkov (1982): Quantum Fields. Benjamin-Cummings Pub. Co., ISBN 0-8053-0983-7.
  6. N. N. Bogoliubov, A. A. Logunov, A. I. Oksak, I. T. Todorov (1990): General Principles of Quantum Field Theory. Dordrecht [Holland]; Boston, Kluwer Academic Publishers. ISBN 0-7923-0540-X. ISBN 978-0-7923-0540-8.
Selected works
  1. N. N. Bogoliubov, Selected Works. Part I. Dynamical Theory. Gordon and Breach, New York, 1990. ISBN 2-88124-752-0, ISBN 978-2-88124-752-1.
  2. N. N. Bogoliubov, Selected Works. Part II. Quantum and Classical Statistical Mechanics. Gordon and Breach, New York, 1991. ISBN 2-88124-768-7.
  3. N. N. Bogoliubov, Selected Works. Part III. Nonlinear Mechanics and Pure Mathematics. Gordon and Breach, Amsterdam, 1995. ISBN 2-88124-918-3.
  4. N. N. Bogoliubov, Selected Works. Part IV. Quantum Field Theory. Gordon and Breach, Amsterdam, 1995. ISBN 2-88124-926-4, ISBN 978-2-88124-926-6.

Selected papers

  • N. N. Bogoliubov (1948). "Equations of Hydrodynamics in Statistical Mechanics" (in Ukrainian). Sbornik Trudov Instituta Matematiki AN USSR 10: 41—59.
  • "On Question about Superfluidity Condition in the Nuclear Matter Theory" (in Russian), Doklady Akademii Nauk USSR, 119, 52, 1958.
  • "On One Variational Principle in Many Body Problem" (in Russian), Doklady Akademii Nauk USSR, 119, N2, 244, 1959.
  • "On Compensation Principle in the Method of Selfconformed Field" (in Russian), Uspekhi Fizicheskhih Nauk, 67, N4, 549, 1959.
  • "The Quasi-averages in Problems of Statistical Mechanics" (in Russian), Preprint D-781, JINR, Dubna, 1961.
  • "On the Hydrodynamics of a Superfluiding" (in Russian), Preprint P-1395, JINR, Dubna, 1963.

See also

References

  1. ^ Nikolay Bogolyubov at the Mathematics Genealogy Project.
  2. ^ N. N. Bogoliubov and N. M. Krylov (1937). "La theorie generalie de la mesure dans son application a l'etude de systemes dynamiques de la mecanique non-lineaire" (in French). Ann. Math. II 38 (1): 65–113. doi:10.2307/1968511. JSTOR 1968511.  Zbl. 16.86.
  3. ^ N. N. Bogoliubov and N. M. Krylov (1939). Fokker-Planck equations generated in perturbation theory by a method based on the spectral properties of a perturbed Hamiltonian. Zapiski Kafedry Fiziki Akademii Nauk Ukrainian SSR 4: 81–157 (in Ukrainian).
  4. ^ N. N. Bogoliubov (1946). "Kinetic Equations" (in Russian). Journal of Experimental and Theoretical Physics 16 (8): 691–702. 
  5. ^ N. N. Bogoliubov (1946). "Kinetic Equations". Journal of Physics 10 (3): 265–274. 
  6. ^ N. N. Bogoliubov, K. P. Gurov (1947). "Kinetic Equations in Quantum Mechanics" (in Russian). Journal of Experimental and Theoretical Physics 17 (7): 614–628. 
  7. ^ N. N. Bogoliubov (1947). "On the Theory of Superfluidity" (in Russian). Izv. Academii Nauk USSR 11 (1): 77. 
  8. ^ N. N. Bogoliubov (1947). "On the Theory of Superfluidity". Journal of Physics 11 (1): 23–32. 
  9. ^ N. N. Bogoliubov (1958). "On a New Method in the Theory of Superconductivity". Journal of Experimental and Theoretical Physics 34 (1): 58. 
  10. ^ N. N. Bogoliubov, O. S. Parasyuk (1955). "[A theory of multiplication of causal singular functions]" (in Russian). Doklady Akademii Nauk SSSR 100: 25–28. 
  11. ^ N. N. Bogoliubov, O. S. Parasyuk (1957). "Uber die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder" (in German). Acta Mathematica 97: 227–266. doi:10.1007/BF02392399. http://www.springerlink.com/content/11135u3k000m7683/. 
  12. ^ N. Bogolubov, B. Struminsky, A. Tavkhelidze. On composite models in the theory of elementary particles. JINR Preprint D-1968, Dubna 1965.

Further reading

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Nikolay Bogolyubov (actor) — For the mathematician and theoretical physicist, see Nikolay Bogolyubov. Nikolay Ivanovich Bogolyubov (October 22, 1899 – March 9, 1980) was a Soviet actor and a People s Artist of the RSFSR (1945). In 1933 he played in Boris Barnet s Okraina; in …   Wikipedia

  • Nikolay Mitrofanovich Krylov — Nikolay Krylov Born 29 November [O.S. 17 November] 1879 St Petersburg, Russian Empire …   Wikipedia

  • Krylov-Bogolyubov theorem — In mathematics, the Krylov Bogolyubov theorem (also known as the existence of invariant measures theorem) may refer to one of two related fundamental theorems in the study of dynamical systems. It guarantees the existence of invariant measures… …   Wikipedia

  • List of Russian people — The Millennium of Russia monument in Veliky Novgorod, featuring the statues and reliefs of the most celebrated people in the first 1000 years of Russian history …   Wikipedia

  • USSR State Prize — The USSR State Prize ( ru. Государственная премия СССР) was the Soviet Union s state honour. It was established on September 9 1966. After the breakup of the Soviet Union the prize was followed up by the State Prize of the Russian Federation.The… …   Wikipedia

  • Quantum chromodynamics — Standard model of particle physics Standard Model …   Wikipedia

  • Abdullah Sadiq — Born 1940 (age 70–71) Peshawar, Pakistan …   Wikipedia

  • Nikolai Bogoliubov — Nikolaï Bogolioubov Pour les articles homonymes, voir Bogolioubov. Nikolaï N. Bogolioubov Nikolaï Nikolaïevitch Bogolioubov (en russe : Николай Николаевич Боголюбов …   Wikipédia en Français

  • Nikolai Nikolaevich Bogoliubov — Nikolaï Bogolioubov Pour les articles homonymes, voir Bogolioubov. Nikolaï N. Bogolioubov Nikolaï Nikolaïevitch Bogolioubov (en russe : Николай Николаевич Боголюбов …   Wikipédia en Français

  • Nikolaï Bogolioubov — Pour les articles homonymes, voir Bogolioubov. Nikolaï Nikolaïevitch Bogolioubov (en russe : Николай Николаевич Боголюбов), né le 21 août 1909 à Nijni Novgorod et mort le 13 février 1992 à Moscou, était un mathématicien… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”