Environmental impact of nanotechnology

Environmental impact of nanotechnology

Part of a series of articles on the

Impact of
Nanotechnology

Health impact
Nanotoxicology, Nanomedicine
Environmental impact
Societal impact
Applications
Regulation

See also
Nanotechnology
v · d · e

The environmental impact of nanotechnology are the possible effects that the use of nanotechnological materials and devices will have on the environment. As nanotechnology is an emerging field, there is great debate regarding to what extent industrial and commercial use of nanomaterials will affect organisms and ecosystems.

Nanotechnology's environmental impact can be split into two aspects: the potential for nanotechnologcal innovations to help improve the environment, and the possibly novel type of pollution that nanotechnological materials might cause if released into the environment.

Contents

Nanopollution

Groups opposing the installation of nanotechnology laboratories in Grenoble, France, have spraypainted their opposition on a former fortress above the city

Nanopollution is a generic name for all waste generated by nanodevices or during the nanomaterials manufacturing process. This kind of waste may be very dangerous because of its size. It can float in the air and might easily penetrate animal and plant cells causing unknown effects. Most human-made nanoparticles do not appear in nature, so living organisms may not have appropriate means to deal with nanowaste. It is probably[who?] one great challenge to nanotechnology: how to deal with its nanopollutants and nanowaste.

Environmental assessment is justified as nanoparticles present novel (new) environmental impacts. Scrinis[1] raises concerns about nano-pollution, and argues that it is not currently possible to “precisely predict or control the ecological impacts of the release of these nano-products into the environment.” Ecotoxicological impacts of nanoparticles and the potential for bioaccumulation in plants and microorganisms remain under-researched. The capacity for nanoparticles to function as a transport mechanism also raises concern about the transport of heavy metals and other environmental contaminants. A May 2007 Report to the UK Department for Environment, Food and Rural Affairs noted concerns about the toxicological impacts of nanoparticles in relation to both hazard and exposure. The report recommended comprehensive toxicological testing and independent performance tests of fuel additives.

Not enough data exists to know for sure if nanoparticles could have undesirable effects on the environment. Two areas are relevant here: (1) In free form nanoparticles can be released in the air or water during production (or production accidents) or as waste by-product of production, and ultimately accumulate in the soil, water or plant life. (2) In fixed form, where they are part of a manufactured substance or product, they will ultimately have to be recycled or disposed of as waste. It is not known yet whether certain nanoparticles will constitute a completely new class of non-biodegradable pollutant. In case they do, it is not known how such pollutants could be removed from air or water because most traditional filters are not suitable for such tasks (their pores are too big to catch nanoparticles).

Of the US$710 million spent in 2002 by the U.S. government on nanotechnology research, only $500,000 was spent on environmental impact assessments. Risks identified by Uskokovic (2007)[2] include: self-replicating nanobots aggressively or through slowly rising supremacy wiping out the whole biosphere; further destabilising the already endangered diversity of the biosphere.

Concerns have been raised about Silver Nano technology used by Samsung in a range of appliances such as washing machines and air purifiers.

Life cycle responsibility

To properly assess the health hazards of engineered nanoparticles the whole life cycle of these particles needs to be evaluated, including their fabrication, storage and distribution, application and potential abuse, and disposal. The impact on humans or the environment may vary at different stages of the life cycle.

The Royal Society report[3] identified a risk of nanoparticles or nanotubes being released during disposal, destruction and recycling, and recommended that “manufacturers of products that fall under extended producer responsibility regimes such as end-of-life regulations publish procedures outlining how these materials will be managed to minimize possible human and environmental exposure” (p.xiii). Reflecting the challenges for ensuring responsible life cycle regulation, the Institute for Food and Agricultural Standards has proposed standards for nanotechnology research and development should be integrated across consumer, worker and environmental standards. They also propose that NGOs and other citizen groups play a meaningful role in the development of these standards.

Environmental benefits of nanotechnology

Energy

Nanotechnology could potentially have a great impact on clean energy production. Research is underway to use nanomaterials for purposes including more efficient solar cells, practical fuel cells, and environmentally friendly batteries. The most advanced nanotechnology projects related to energy are: storage, conversion, manufacturing improvements by reducing materials and process rates, energy saving (by better thermal insulation for example), and enhanced renewable energy sources.

Current commercially available solar cells have low efficiencies of 15-20%. Research is ongoing to use nanowires and other nanostructured materials with the hope of to create cheaper and more efficient solar cells than are possible with conventional planar silicon solar cells.[4] It is believed that these nanoelectronics-based devices will enable more efficient solar cells, and would have a great effect on satisfying global energy needs.

Another example for an environmentally friendly form of energy is the use of fuel cells powered by hydrogen. Probably the most prominent nanostructured material in fuel cells is the catalyst consisting of carbon supported noble metal particles with diameters of 1-5 nm. Suitable materials for hydrogen storage contain a large number of small nanosized pores.

Nanotechnology may also find applications in batteries. Because of the relatively low energy density of conventional batteries the operating time is limited and a replacement or recharging is needed, and the huge number of spent batteries represent a disposal problem. The use of nanomaterials may enable batteries with higher energy content or supercapacitors with a higher rate of recharging, which could be helpful for the battery disposal problem.

Water filtration and remediation

A strong influence of nanochemistry on waste-water treatment, air purification and energy storage devices is to be expected.

Mechanical or chemical methods can be used for effective filtration techniques. One class of filtration techniques is based on the use of membranes with suitable hole sizes, whereby the liquid is pressed through the membrane. Nanoporous membranes are suitable for a mechanical filtration with extremely small pores smaller than 10 nm (“nanofiltration”) and may be composed of nanotubes. Nanofiltration is mainly used for the removal of ions or the separation of different fluids.

Magnetic nanoparticles offer an effective and reliable method to remove heavy metal contaminants from waste water by making use of magnetic separation techniques. Using nanoscale particles increases the efficiency to absorb the contaminants and is comparatively inexpensive compared to traditional precipitation and filtration methods.

Some water-treatment devices incorporating nanotechnology are already on the market, with more in development. Low-cost nanostructured separation membranes methods have been shown to be effective in producing potable water in a recent study.[5]

Nanoscale iron particles have also shown potential as a detoxifying agent for cleaning environmental contaminents from brownfield sites.[6]

See also

References

  1. ^ Gyorgy Scrinis (2007). "Nanotechnology and the Environment: The Nano-Atomic reconstruction of Nature". Chain Reaction 97: 23–26. http://nano.foe.org.au/node/130. 
  2. ^ Vuk Uskokovic (2007). "Nanotechnologies: What we do not know". Technology in Society 29: 43–61. doi:10.1016/j.techsoc.2006.10.005. 
  3. ^ Royal Society and Royal Academy of Engineering (2004). Nanoscience and nanotechnologies: opportunities and uncertainties. http://www.nanotec.org.uk/finalReport.htm. Retrieved 2008-05-18. 
  4. ^ Tian, Bozhi; Zheng, Xiaolin; Kempa, Thomas J.; Fang, Ying;Yu, Nanfang; Yu, Guihua; Huang, Jinlin & Lieber, Charles M. (2007). "Coaxial silicon nanowires as solar cells and nanoelectronic power sources". Nature 449 (7164): 885–889. Bibcode 2007Natur.449..885T. doi:10.1038/nature06181. PMID 17943126. http://www.nature.com/nature/journal/v449/n7164/abs/nature06181.html. 
  5. ^ Hillie, Thembela; Hlophe, Mbhuti (2007). "Nanotechnology and the challenge of clean water". Nature Nanotechnology 2 (11): 663–664. Bibcode 2007NatNa...2..663H. doi:10.1038/nnano.2007.350. PMID 18654395. 
  6. ^ Zhang, Wei-xian (2003). "Nanoscale iron particles for environmental remediation: an overview.". Journal of Nanoparticle Research 5: 323–332. doi:10.1023/A:1025520116015. 

Further reading

External links


Wikimedia Foundation. 2010.

См. также в других словарях:

  • Environmental implications of nanotechnology — The environmental implications of nanotechnology are the possible effects that the use of nanotechnological materials and devices will have on the environment. As nanotechnology is an emerging field, there is great debate regarding to what extent …   Wikipedia

  • Impact of nanotechnology — Part of a series of articles on the Impact of Nanotechnology …   Wikipedia

  • Environmental impact of the energy industry — Rate of world energy usage in terawatts (TW), 1965 2005.[1] …   Wikipedia

  • Environmental impact of shipping — A cargo ship discharging ballast water into the sea. The environmental impact of shipping includes greenhouse gas emissions and oil pollution. Carbon dioxide emissions from shipping is currently estimated at 4 to 5 percent of the global total,… …   Wikipedia

  • Environmental impact of wind power — Livestock ignore wind turbines,[1] and continue to graze as they did before wind turbines were installed. Compared to the environmental impact of traditional energy sources, the environmental impact of wind power is relatively minor. Wind power… …   Wikipedia

  • Environmental impact of the oil shale industry — Kiviõli Oil Shale Processing Chemicals Plant in Ida Virumaa, Estonia Environmental impact of the oil shale industry includes the consideration of issues such as land use, waste management, and water and air pollution caused by the extraction and… …   Wikipedia

  • Environmental impact of nuclear power — Nuclear power activities involving the environment; mining, enrichment, generation and geological disposal. The environmental impact of nuclear power results from the nuclear fuel cycle, operation, and the effects of nuclear accidents. The… …   Wikipedia

  • Environmental impact of cleaning agents — Environmental impacts of cleaning agents are the consequences of chemicals contained in the products that are essential for their effectiveness. Bioactive molecules that are detrimental to the environment can either result from molecules that… …   Wikipedia

  • Health impact of nanotechnology — Part of a series of articles on the Impact of Nanotechnology …   Wikipedia

  • Nanotechnology — Part of a series of articles on …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»