Acid–base homeostasis

Acid–base homeostasis
Blood gas, acid-base, & gas exchange terms
PaO2 Arterial oxygen tension, or partial pressure
PAO2 Alveolar oxygen tension, or partial pressure
PACO2 Arterial carbon dioxide tension, or partial pressure
PaCO2 Alveolar carbon dioxide tension, or partial pressure
PvO2 Oxygen tension of mixed venous blood
P(A-a)O2 Alveolar-arterial oxygen tension difference. The term formerly used (A-a DO2) is discouraged.
P(a/A)O2 Alveolar-arterial tension ratio; PaO2:PAO2 The term oxygen exchange index describes this ratio.
C(a-v)O2 Arteriovenous oxygen content difference
SaO2 Oxygen saturation of the hemoglobin of arterial blood
SpO2 Oxygen saturation as measured by pulse oximetry
CaO2 Oxygen content of arterial blood
pH Symbol relating the hydrogen ion concentration or activity of a solution to that of a standard solution; approximately equal to the negative logarithm of the hydrogen ion concentration. pH is an indicator of the relative acidity or alkalinity of a solution
v · Acids and Bases
Acid dissociation constant
Acid-base extraction
Acid–base reaction
Acid–base titration
Dissociation constant
Acidity function
Buffer solutions
Proton affinity
Self-ionization of water
Acid types
Brønsted · Lewis · Mineral
Organic · Strong
Superacids · Weak
Base types
Brønsted · Lewis · Organic
Strong · Superbases
Non-nucleophilic · Weak
v · d · e

Acid–base homeostasis is the part of human homeostasis concerning the proper balance between acids and bases, in other words, the pH. The body is very sensitive to its pH level, so strong mechanisms exist to maintain it. Outside the acceptable range of pH, proteins are denatured and digested, enzymes lose their ability to function, and death may occur.



Acid-base nomogram.svg

The body's acid–base balance is tightly regulated. Several buffering agents that reversibly bind hydrogen ions and impede any change in pH exist. Extracellular buffers include bicarbonate and ammonia, whereas proteins and phosphate act as intracellular buffers. The bicarbonate buffering system is especially key, as carbon dioxide (CO2) can be shifted through carbonic acid (H2CO3) to hydrogen ions and bicarbonate (HCO3-) as shown below.

\rm H_2O+CO_2 \leftrightarrow H_2CO_3 \leftrightarrow H^++HCO_3^-

Acid–base imbalances that overcome the buffer system can be compensated in the short term by changing the rate of ventilation. This alters the concentration of carbon dioxide in the blood, shifting the above reaction according to Le Chatelier's principle, which in turn alters the pH. For instance, if the blood pH drops too low (acidemia), the body will compensate by increasing breathing, expelling CO2, and shifting the above reaction to the left such that less hydrogen ions are free; thus the pH will rise back to normal. For alkalemia, the opposite occurs.

The kidneys are slower to compensate, but renal physiology has several powerful mechanisms to control pH by the excretion of excess acid or base. In responses to acidosis, tubular cells reabsorb more bicarbonate from the tubular fluid, collecting duct cells secrete more hydrogen and generate more bicarbonate, and ammoniagenesis leads to increased formation of the NH3 buffer. In responses to alkalosis, the kidney may excrete more bicarbonate by decreasing hydrogen ion secretion from the tubular epithelial cells, and lowering rates of glutamine metabolism and ammonia excretion.


Acid–base imbalance occurs when a significant insult causes the blood pH to shift out of the normal range (7.35 to 7.45). In the fetus, the normal range differs based on which umbilical vessel is sampled (umbilical vein pH is normally 7.25 to 7.45; umbilical artery pH is normally 7.18 to 7.38).[1] An excess of acid in the blood is called acidemia and an excess of base is called alkalemia. The process that causes the imbalance is classified based on the etiology of the disturbance (respiratory or metabolic) and the direction of change in pH (acidosis or alkalosis). There are four basic processes: metabolic acidosis, respiratory acidosis, metabolic alkalosis, and respiratory alkalosis. One or a combination may occur at any given time.


  1. ^ Yeomans, ER; Hauth, JC; Gilstrap, LC III; Strickland DM (1985). "Umbilical cord pH, PCO2, and bicarbonate following uncomplicated term vaginal deliveries (146 infants)". Am J Obstet Gynecol 151: 798–800. 

External links

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Acid-base homeostasis — is the part of human homeostasis concerning the proper balance between acids and bases, in other words the pH. The body is very sensitive to its pH level. Outside the range of pH that is compatible with life, proteins are denatured and digested,… …   Wikipedia

  • Acid-base physiology — is the study of the acids, bases and their reactions in the body. For survival, acid base homeostasis is an absolute requirement. The traditional approach to the study of acid base physiology has been the empiric approach. The main variants are… …   Wikipedia

  • Acid-base imbalance — Infobox Disease Name = PAGENAME Caption = DiseasesDB = ICD10 = ICD10|E|87|2|e|70 ICD10|E|87|4|e|70 ICD9 = ICD9|276.2 ICD9|276.4 | ICDO = OMIM = MedlinePlus = eMedicineSubj = eMedicineTopic = MeshID = D000137 Acid base imbalance has several… …   Wikipedia

  • Mixed disorder of acid-base balance — DiseaseDisorder infobox Name = Mixed disorder of acid base balance ICD10 = ICD10|E|87|4|e|70 ICD9 = ICD9|276.4 In a mixed disorder of acid base balance more than one of the following four primary acid base disorders is occurring in the patient at …   Wikipedia

  • Acid dissociation constant — Acetic acid, a weak acid, donates a proton (hydrogen ion, high …   Wikipedia

  • homeostasis — 1. The state of equilibrium (balance between opposing pressures) in the body with respect to various functions and to the chemical compositions of the fluids and tissues. 2. The processes through which such bodily equilibrium is maintained.… …   Medical dictionary

  • homeostasis — n. the physiological process by which the internal systems of the body (e.g. blood pressure, body temperature, acid base balance) are maintained at equilibrium, despite variations in the external conditions. Derivatives: homeostatic adj …   The new mediacal dictionary

  • Human homeostasis — refers to the body s ability to regulate its internal physiology to maintain stability in response to fluctuations in the outside environment. The liver and kidneys help maintain homeostasis. The liver is responsible for metabolizing toxic… …   Wikipedia

  • Lactic acid — L Lactic acid …   Wikipedia

  • Kidney — For other uses, see Kidney (disambiguation). Kidney Human kidneys viewed from behind with spine removed Latin ren Artery …   Wikipedia