﻿

In mathematics, the Miracle Octad Generator, or MOG, is a mathematical tool introduced by Curtis (1976) for manipulating the Mathieu groups, binary Golay code and Leech lattice.

## Description

The Miracle Octad Generator is an array of coordinates, arranged in four rows and six columns, capable of describing any point in 24-dimensional space. It is remarkable in the fact that it reflects all of the symmetries of the Mathieu group M24, despite its simplicity. More specifically, it preserves the maximal subgroups of M24, namely the monad group, duad group, triad group, octad group, octern group, sextet group, trio group and duum group. This makes it invaluable, as it can be used to study all of these symmetries without having to visualise 24-dimensional space.

## Golay code

Another use for the Miracle Octad Generator is to quickly verify codewords of the binary Golay code. Each element of the Miracle Octad Generator can store either a '1' or a '0', usually displayed as an asterisk and blank space, respectively. Each column and the top row have a property known as the count, which is the number of asterisks in that particular line. One of the criteria for a set of 24 coordinates to be a codeword in the binary Golay code is for all seven counts to be of the same parity. The other restriction is that the scores of each column form a word in the hexacode. The score of a column can be either 0, 1, ω, or ω-bar, depending on its contents. The score of a column is evaluated by the following rules:

• If a column contains exactly one asterisk, it has a score of 0 if it resides in the top row, 1 if it is in the second row, ω for the third row, and ω-bar for the bottom row.
• Simultaneously complementing every bit in a column does not affect its score.
• Complementing the bit in the top row does not affect its score, either.

A codeword can be derived from just its top row and score, which proves that there are exactly 4096 codewords in the binary Golay code.

## MiniMOG

John Horton Conway developed a 4 × 3 array known as the MiniMOG. The MiniMOG provides the same function for the Mathieu group M12 and ternary Golay code as the Miracle Octad Generator does for M24 and binary Golay code, respectively. Instead of using a quaternary hexacode, the MiniMOG uses a ternary tetracode.

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Mathieu group — Group theory Group theory …   Wikipedia

• Binary Golay code — In mathematics and computer science, a binary Golay code is a type of error correcting code used in digital communications. The binary Golay code, along with the ternary Golay code, has a particularly deep and interesting connection to the theory …   Wikipedia

• Mog — (or MOG) may refer to: The Miracle Octad Generator Mog (people), the Arakanese descendants living in Tripura in India MOdified Gravity theory A domestic cat Myelin oligodendrocyte glycoprotein, a glycoprotein believed to be important in the… …   Wikipedia

• Hexacode — In coding theory, the hexacode is length 6 linear code of dimension 3 over the Galois field GF(4)={0,1,omega,omega^2} of 4 elements defined by :H={(a,b,c,f(1),f(omega),f(omega^2) : f(x):=ax^2+bx+c; a,b,cin GF(4)}.Then H contains 45 codewords of… …   Wikipedia

• Code De Golay — En théorie des codes, un code de Golay est un code correcteur d erreurs pouvant être binaire ou tertiaire, nommé en l honneur de son inventeur, Marcel J. E. Golay. Il y a deux types de code de Golay binaire. Le code binaire étendu de Golay encode …   Wikipédia en Français

• Code de Golay — Pour les articles homonymes, voir Golay. En théorie des codes, un code de Golay est un code correcteur d erreurs pouvant être binaire ou tertiaire, nommé en l honneur de son inventeur, Marcel Golay. Il y a deux types de code de Golay binaire. Le… …   Wikipédia en Français

• Code de golay — En théorie des codes, un code de Golay est un code correcteur d erreurs pouvant être binaire ou tertiaire, nommé en l honneur de son inventeur, Marcel J. E. Golay. Il y a deux types de code de Golay binaire. Le code binaire étendu de Golay encode …   Wikipédia en Français