Amazon rainforest

Amazon rainforest
Amazon Rainforest
Forest
Amazon rainforest, near Manaus, Brazil.
Countries Brazil, Peru, Colombia, Venezuela, Ecuador, Bolivia, Guyana, Suriname, France (French Guyana)
Part of South America
River Amazon River
Area 5,500,000 km2 (2,123,562 sq mi)
Map of the Amazon rainforest ecoregions as delineated by the WWF. Yellow line approximately encloses the Amazon drainage basin. National boundaries shown in black. Satellite image from NASA.

The Amazon Rainforest (in Portuguese, Floresta Amazônica or Amazônia; Spanish Selva Amazónica, Amazonía or usually Amazonia), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon Basin of South America. This basin encompasses seven million square kilometers (1.7 billion acres), of which five and a half million square kilometers (1.4 billion acres) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, and with minor amounts in Colombia, Venezuela, Ecuador, Bolivia, Guyana, Suriname and France (French Guiana). States or departments in four nations bear the name Amazonas after it. The Amazon represents over half of the planet's remaining rainforests, and it comprises the largest and most species-rich tract of tropical rainforest in the world.

The Amazon rainforest was short-listed in 2008 as a candidate to be one of the New7Wonders of Nature by the New Seven Wonders of the World Foundation. As of February 2009 the Amazon was ranking first in Group E, the category for forests, national parks and nature reserves.[1]

Contents

Etymology

The name Amazon is said to arise from a war Francisco de Orellana fought with a tribe of Tapuyas and other tribes from South America. The women of the tribe fought alongside the men, as was the custom among the entire tribe.[2] Orellana derived the name Amazonas from the ancient Amazons of Asia and Africa described by Herodotus and Diodorus in Greek legends.[2]

History

Earth during the Eocene

The rainforest likely formed during the Eocene era. It appeared following a global reduction of tropical temperatures when the Atlantic Ocean had widened sufficiently to provide a warm, moist climate to the Amazon basin. The rain forest has been in existence for at least 55 million years, and most of the region remained free of savanna-type biomes at least until the current ice age, when the climate was drier and savanna more widespread.[3][4]

Following the Cretaceous–Tertiary extinction event, the extinction of the dinosaurs and the wetter climate may have allowed the tropical rainforest to spread out across the continent. From 65–34 Mya, the rainforest extended as far south as 45°. Climate fluctuations during the last 34 million years have allowed savanna regions to expand into the tropics. During the Oligocene, for example, the rainforest spanned a relatively narrow band that lay mostly above latitude 15°N. It expanded again during the Middle Miocene, then retracted to a mostly inland formation at the last glacial maximum.[5] However, the rainforest still managed to thrive during these glacial periods, allowing for the survival and evolution of a broad diversity of species.[6]

During the mid-Eocene, it is believed that the drainage basin of the Amazon was split along the middle of the continent by the Purus Arch. Water on the eastern side flowed toward the Atlantic, while to the west water flowed toward the Pacific across the Amazonas Basin. As the Andes Mountains rose, however, a large basin was created that enclosed a lake; now known as the Solimões Basin. Within the last 5–10 million years, this accumulating water broke through the Purus Arch, joining the easterly flow toward the Atlantic.[7][8]

There is evidence that there have been significant changes in Amazon rainforest vegetation over the last 21,000 years through the Last Glacial Maximum (LGM) and subsequent deglaciation. Analyses of sediment deposits from Amazon basin paleolakes and from the Amazon Fan indicate that rainfall in the basin during the LGM was lower than for the present, and this was almost certainly associated with reduced moist tropical vegetation cover in the basin.[9] There is debate, however, over how extensive this reduction was. Some scientists argue that the rainforest was reduced to small, isolated refugia separated by open forest and grassland;[10] other scientists argue that the rainforest remained largely intact but extended less far to the north, south, and east than is seen today.[11] This debate has proved difficult to resolve because the practical limitations of working in the rainforest mean that data sampling is biased away from the center of the Amazon basin, and both explanations are reasonably well supported by the available data.

Based on archaeological evidence from an excavation at Caverna da Pedra Pintada, human inhabitants first settled in the Amazon region at least 11,200 years ago.[12] Subsequent development led to late-prehistoric settlements along the periphery of the forest by 1250 AD, which induced alterations in the forest cover.[13] Biologists believe that a population density of 0.2 inhabitants per square kilometre (0.52 /sq mi) is the maximum that can be sustained in the rain forest through hunting. Hence, agriculture is needed to host a larger population.[14]

Some 5 to 7[citation needed] million people lived in the Amazon region, divided between dense coastal settlements, such as that at Marajó, and inland dwellers. For a long time, it was believed that those inland dwellers were sparsely populated hunter-gatherer tribes. Archeologist Betty J. Meggers was a prominent proponent of this idea, as described in her book Amazonia: Man and Culture in a Counterfeit Paradise. However, recent archeological findings have suggested that the region was actually densely populated.

One of the main pieces of evidence is the existence of the fertile Terra preta (black earth), which is distributed over large areas in the Amazon forest. It is now widely accepted that these soils are a product of indigenous soil management. The development of this soil allowed agriculture and silviculture in the previously hostile environment; meaning that large portions of the Amazon rainforest are probably the result of centuries of human management, rather than naturally occurring as has previously been supposed.[15] In the region of the Xinguanos tribe, remains of some of these large settlements in the middle of the Amazon forest were found in 2003 by Michael Heckenberger and colleagues of the University of Florida. Among those were evidence of roads, bridges and large plazas.[16]

The first European to travel the length of the Amazon River was Francisco de Orellana in 1542.[17]

Biodiversity

Deforestation in the Amazon Rainforest threatens many species of tree frogs, which are very sensitive to environmental changes (pictured: Giant leaf frog)
Scarlet Macaw, which is indigenous to the American tropics.

Wet tropical forests are the most species-rich biome, and tropical forests in the Americas are consistently more species rich than the wet forests in Africa and Asia.[18] As the largest tract of tropical rainforest in the Americas, the Amazonian rainforests have unparalleled biodiversity. One in ten known species in the world lives in the Amazon Rainforest.[19] This constitutes the largest collection of living plants and animal species in the world.

The region is home to about 2.5 million insect species,[20] tens of thousands of plants, and some 2,000 birds and mammals. To date, at least 40,000 plant species, 2,200 fishes[21], 1,294 birds, 427 mammals, 428 amphibians, and 378 reptiles have been scientifically classified in the region.[22] One in five of all the bird species in the world live in the rainforests of the Amazon, and one in five of the fish species live in Amazonian rivers and streams. Scientists have described between 96,660 and 128,843 invertebrate species in Brazil alone.[23]

The diversity of plant species is the highest on Earth with some experts estimating that one square kilometer (247 acres) may contain more than a thousand types of trees and thousands of species of other higher plants. According to a 2001 study, a quarter square kilometer (62 acres) of Ecuadorian rainforest supports more than 1,100 tree species.[24]

One square kilometer (247 acres) of Amazon rainforest can contain about 90,790 tonnes of living plants. The average plant biomass is estimated at 356 ± 47 tonnes per hectare.[25] To date, an estimated 438,000 species of plants of economic and social interest have been registered in the region with many more remaining to be discovered or catalogued.[26]

The green leaf area of plants and trees in the rainforest varies by about 25% as a result of seasonal changes. Leaves expand during the dry season when sunlight is at a maximum, then undergo abscission in the cloudy wet season. These changes provide a balance of carbon between photosynthesis and respiration.[27]

The rainforest contains several species that can pose a hazard. Among the largest predatory creatures are the black caiman, jaguar, cougar, and anaconda. In the river, electric eels can produce an electric shock that can stun or kill, while piranha are known to bite and injure humans.[28] Various species of poison dart frogs secrete lipophilic alkaloid toxins through their flesh. There are also numerous parasites and disease vectors. Vampire bats dwell in the rainforest and can spread the rabies virus.[29] Malaria, yellow fever and Dengue fever can also be contracted in the Amazon region.

Deforestation

Amazon Rainforest

Deforestation is the conversion of forested areas to non-forested areas. The main sources of deforestation in the Amazon are human settlement and development of the land.[30] Prior to the early 1960s, access to the forest's interior was highly restricted, and the forest remained basically intact.[31] Farms established during the 1960s were based on crop cultivation and the slash and burn method. However, the colonists were unable to manage their fields and the crops because of the loss of soil fertility and weed invasion.[32] The soils in the Amazon are productive for just a short period of time, so farmers are constantly moving to new areas and clearing more land.[32] These farming practices led to deforestation and caused extensive environmental damage.[33] Deforestation is considerable, and areas cleared of forest are visible to the naked eye from outer space.

Between 1991 and 2000, the total area of forest lost in the Amazon rose from 415,000 to 587,000 square kilometres (160,000 to 227,000 sq mi), with most of the lost forest becoming pasture for cattle.[34] Seventy percent of formerly forested land in the Amazon, and 91% of land deforested since 1970, is used for livestock pasture.[35][36] In addition, Brazil is currently the second-largest global producer of soybeans after the United States. The needs of soy farmers have been used to validate many of the controversial transportation projects that are currently developing in the Amazon. The first two highways successfully opened up the rain forest and led to increased settlement and deforestation. The mean annual deforestation rate from 2000 to 2005 (22,392 km2 or 8,646 sq mi per year) was 18% higher than in the previous five years (19,018 km2 or 7,343 sq mi per year).[37] Deforestation has declined significantly in the Brazilian Amazon since 2004.[38]

Conservation and climate change

Environmentalists are concerned about loss of biodiversity that will result from destruction of the forest, and also about the release of the carbon contained within the vegetation, which could accelerate global warming. Amazonian evergreen forests account for about 10% of the world's terrestrial primary productivity and 10% of the carbon stores in ecosystems[39]—of the order of 1.1 × 1011 metric tonnes of carbon.[40] Amazonian forests are estimated to have accumulated 0.62 ± 0.37 tons of carbon per hectare per year between 1975 and 1996.[40]

One computer model of future climate change caused by greenhouse gas emissions shows that the Amazon rainforest could become unsustainable under conditions of severely reduced rainfall and increased temperatures, leading to an almost complete loss of rainforest cover in the basin by 2100.[41][42] However, simulations of Amazon basin climate change across many different models are not consistent in their estimation of any rainfall response, ranging from weak increases to strong decreases.[43] The result indicates that the rainforest could be threatened though the 21st century by climate change in addition to deforestation.

In 1989, environmentalist C.M. Peters and two colleagues stated there is economic as well as biological incentive to protecting the rainforest. One hectare in the Peruvian Amazon has been calculated to have a value of $6820 if intact forest is sustainably harvested for fruits, latex, and timber; $1000 if clear-cut for commercial timber (not sustainably harvested); or $148 if used as cattle pasture.[44]

As indigenous territories continue to be destroyed by deforestation and ecocide, such as in the Peruvian Amazon[45] indigenous peoples' rainforest communities continue to disappear, while others, like the Urarina continue to struggle to fight for their cultural survival and the fate of their forested territories. Meanwhile, the relationship between non-human primates in the subsistence and symbolism of indigenous lowland South American peoples has gained increased attention, as has ethno-biology and community-based conservation efforts.

From 2002 to 2006, the conserved land in the Amazon rainforest has almost tripled and deforestation rates have dropped up to 60%. About 1,000,000 square kilometres (250,000,000 acres) have been put onto some sort of conservation, which adds up to a current amount of 1,730,000 square kilometres (430,000,000 acres).[46]

A 2009 study found that a 4 °C rise in global temperatures by 2100 would kill 85% of the Amazon rainforest while a temperature rise of 3 °C would kill some 75% of the Amazon.[47]

Remote sensing

This image reveals how the forest and the atmosphere interact to create a uniform layer of “popcorn-shaped” cumulus clouds.

The use of remotely sensed data is dramatically improving conservationists' knowledge of the Amazon Basin. Given the objectivity and lowered costs of satellite-based land cover analysis, it appears likely that remote sensing technology will be an integral part of assessing the extent and damage of deforestation in the basin.[48] Furthermore, remote sensing is the best and perhaps only possible way to study the Amazon on a large-scale.[49]

The use of remote sensing for the conservation of the Amazon is also being used by the indigenous tribes of the basin to protect their tribal lands from commercial interests. Using handheld GPS devices and programs like Google Earth, members of the Trio Tribe, who live in the rainforests of southern Suriname, map out their ancestral lands to help strengthen their territorial claims.[50] Currently, most tribes in the Amazon do not have clearly defined boundaries, making it easier for commercial ventures to target their territories.

To accurately map the Amazon's biomass and subsequent carbon related emissions, the classification of tree growth stages within different parts of the forest is crucial. In 2006 Tatiana Kuplich organized the trees of the Amazon into four categories: (1) mature forest, (2) regenerating forest [less than three years], (3) regenerating forest [between three and five years of regrowth], and (4) regenerating forest [eleven to eighteen years of continued development].[51] The researcher used a combination of Synthetic aperture radar (SAR) and Thematic Mapper (TM) to accurately place the different portions of the Amazon into one of the four classifications.

Impact of early 21st century Amazon droughts

In 2005, parts of the Amazon basin experienced the worst drought in one hundred years,[52] and there were indications that 2006 could have been a second successive year of drought.[53] A July 23, 2006 article in the UK newspaper The Independent reported Woods Hole Research Center results showing that the forest in its present form could survive only three years of drought.[54][55] Scientists at the Brazilian National Institute of Amazonian Research argue in the article that this drought response, coupled with the effects of deforestation on regional climate, are pushing the rainforest towards a "tipping point" where it would irreversibly start to die. It concludes that the forest is on the brink of being turned into savanna or desert, with catastrophic consequences for the world's climate.

According to the World Wide Fund for Nature, the combination of climate change and deforestation increases the drying effect of dead trees that fuels forest fires.[56]

In 2010 the Amazon rainforest experienced another severe drought, in some ways more extreme than the 2005 drought. The affected region was approximate 1,160,000 square miles (3,000,000 km2) of rainforest, compared to 734,000 square miles (1,900,000 km2) in 2005. The 2010 drought had three epicenters where vegetation died off, whereas in 2005 the drought was focused on the southwestern part. The findings were published in the journal Science. In a typical year the Amazon absorbs 1.5 gigatons of carbon dioxide; during 2005 instead 5 gigatons were released and in 2010 8 gigatons were released[57][58]

See also

References

  1. ^ New7Wonders of the Word: Live Ranking
  2. ^ a b Taylor, Isaac (1898). Names and Their Histories: A Handbook of Historical Geography and Topographical Nomenclature. London: Rivingtons. ISBN 0559296681. http://books.google.com/?id=vqgYAAAAIAAJ&pg=PA44. Retrieved October 12, 2008. 
  3. ^ Morley, Robert J. (2000). Origin and Evolution of Tropical Rain Forests. Wiley. ISBN 0471983268. 
  4. ^ Burnham, Robyn J.; Johnson, Kirk R. (2004). "South American palaeobotany and the origins of neotropical rainforests". Philosophical Transactions of the Royal Society 359 (1450): 1595–1610. doi:10.1098/rstb.2004.1531. PMC 1693437. PMID 15519975. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1693437. 
  5. ^ Maslin, Mark; Malhi, Yadvinder; Phillips, Oliver; Cowling, Sharon (2005). "New views on an old forest: assessing the longevity, resilience and future of the Amazon rainforest" (PDF). Transactions of the Institute of British Geographers 30 (4): 477–499. doi:10.1111/j.1475-5661.2005.00181.x. http://earth.leeds.ac.uk/ebi/publications/Maslin_2005.pdf. Retrieved September 25, 2008. 
  6. ^ Malhi, Yadvinder; Phillips, Oliver (2005). Tropical Forests & Global Atmospheric Change. Oxford University Press. ISBN 0198567065. 
  7. ^ Costa, João Batista Sena; Bemerguy, Ruth Léa; Hasui, Yociteru; Borges, Maurício da Silva (2001). "Tectonics and paleogeography along the Amazon river". Journal of South American Earth Sciences 14 (4): 335–347. doi:10.1016/S0895-9811(01)00025-6. 
  8. ^ Milani, Edison José; Zalán, Pedro Victor (1999). "An outline of the geology and petroleum systems of the Paleozoic interior basins of South America" (PDF). Episodes 22 (3): 199–205. http://www.episodes.org/backissues/223/199-205%20Milani.pdf. Retrieved September 25, 2008. 
  9. ^ Colinvaux, P.A., De Oliveira, P.E. 2000. Palaeoecology and climate of the Amazon basin during the last glacial cycle. Wiley InterScience. (abstract)
  10. ^ Van der Hammen, T., Hooghiemstra, H.. 2002. Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Elsevier Science Ltd. (abstract)
  11. ^ Colinvaux, P. A.; De Oliveira, P. E.; Bush, M. B. (January 2000). "Amazonian and neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses". Quaternary Science Reviews 19 (1–5): 141–169. doi:10.1016/S0277-3791(99)00059-1. 
  12. ^ Roosevelt, A. C.; da Costa, M. Lima; Machado, C. Lopes; Michab, M.; Mercier, N.; Valladas, H.; Feathers, J.; Barnett, W.; da Silveira, M. Imazio; Henderson, A.; Sliva, J.; Chernoff, B.; Reese, D. S.; Holman, J. A.; Toth, N.; Schick, K.; (April 19, 1996). "Paleoindian Cave Dwellers in the Amazon: The Peopling of the Americas". Science 272 (5260): 373–384. doi:10.1126/science.272.5260.373. 
  13. ^ Heckenberger, Michael J.; Kuikuro, Afukaka; Kuikuro, Urissapá Tabata; Russell, J. Christian; Schmidt, Morgan; Fausto, Carlos; Franchetto, Bruna (September 19, 2003). "Amazonia 1492: Pristine Forest or Cultural Parkland?". Science 301 (5640): 1710–1714. doi:10.1126/science.1086112. PMID 14500979. 
  14. ^ Meggers, Betty J. (December 19, 2003). "Revisiting Amazonia Circa 1492". Science 302 (5653): 2067–2070. doi:10.1126/science.302.5653.2067b. PMID 14684803. 
  15. ^ The influence of human alteration has been generally underestimated, reports Darna L. Dufour: “Much of what has been considered natural forest in Amazonia is probably the result of hundreds of years of human use and management.” “Use of Tropical Rainforests by Native Amazonians,” BioScience 40, no. 9 (October 1990):658. For an example of how such peoples integrated planting into their nomadic lifestyles, see Rival, Laura, 1993. "The Growth of Family Trees: Understanding Huaorani Perceptions of the Forest," Man 28(4):635-652.
  16. ^ Heckenberger, M.J.; Kuikuro, A; Kuikuro, UT; Russell, JC; Schmidt, M; Fausto, C; Franchetto, B (19 September 2003), "Amazonia 1492: Pristine Forest or Cultural Parkland?", Science 301 (5640): 1710–14, 2003, doi:10.1126/science.1086112, PMID 14500979 
  17. ^ Smith, A (1994). Explorers of the Amazon. Chicago: University of Chicago Press. ISBN 0226763374. 
  18. ^ Turner, I.M. 2001. The ecology of trees in the tropical rain forest. Cambridge University Press, Cambridge. ISBN 0-521-80183-4
  19. ^ "Amazon Rainforest, Amazon Plants, Amazon River Animals". World Wide Fund for Nature. http://www.worldwildlife.org/wildplaces/amazon/index.cfm. Retrieved May 6, 2008. 
  20. ^ "Photos / Pictures of the Amazon Rainforest". Travel.mongabay.com. http://travel.mongabay.com/brazil/brazil_amazon_index.htm. Retrieved December 18, 2008. 
  21. ^ James S. Albert; Roberto E. Reis (8 March 2011). Historical Biogeography of Neotropical Freshwater Fishes. University of California Press. p. 308. http://www.ucpress.edu/book.php?isbn=9780520268685. Retrieved 28 June 2011. 
  22. ^ Da Silva, Jose Maria Cardoso et al. (2005). "The Fate of the Amazonian Areas of Endemism". Conservation Biology 19 (3): 689–694. doi:10.1111/j.1523-1739.2005.00705.x. 
  23. ^ Lewinsohn, Thomas M.; Paulo Inácio Prado (June 2005). "How Many Species Are There in Brazil?". Conservation Biology 19 (3): 619–624. doi:10.1111/j.1523-1739.2005.00680.x. 
  24. ^ Wright, S. Joseph (October 12, 2001). "Plant diversity in tropical forests: a review of mechanisms of species coexistence". Oecologia 130: 1–14. doi:10.1007/s004420100809. 
  25. ^ Laurance, William F.; Fearnside, Philip M.; Laurance, Susan G.; Delamonica, Patricia; Lovejoy, Thomas E.; Rankin-de Merona, Judy M.; Chambers, Jeffrey Q.; Gascon, Claude (June 14, 1999). "Relationship between soils and Amazon forest biomass: a landscape-scale study". Forest Ecology and Management 118 (1–3): 127–138. doi:10.1016/S0378-1127(98)00494-0. 
  26. ^ "Amazon Rainforest". South AmericaTravel Guide. http://www.travelsouth-america.com/amazon.html. Retrieved August 19, 2008. 
  27. ^ Mynenia, Ranga B. et al. (March 13, 2007). "Large seasonal swings in leaf area of Amazon rainforests". Proceedings of the National Academy of Science 104 (12): 4820–4823. doi:10.1073/pnas.0611338104. PMC 1820882. PMID 17360360. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1820882. 
  28. ^ Staff (July 2, 2007). "Piranha 'less deadly than feared'". BBC News Online. http://news.bbc.co.uk/2/hi/science/nature/6259946.stm. Retrieved July 2, 2007. 
  29. ^ da Rosa, Elizabeth S. T. et al. (August 2006). "Bat-transmitted Human Rabies Outbreaks, Brazilian Amazon" (PDF). Emerging Infectious Diseases 12 (8): 1197–1202. PMID 16965697. http://origin.cdc.gov/ncidod/EID/vol12no08/pdfs/05-0929.pdf. Retrieved October 11, 2008. 
  30. ^ Various (2001). Bierregaard, Richard; Gascon, Claude; Lovejoy, Thomas E.; Mesquita, Rita. ed. Lessons from Amazonia: The Ecology and Conservation of a Fragmented Forest. Yale University Press. ISBN 0300084838. 
  31. ^ Kirby, Kathryn R.; Laurance, William F.; Albernaz, Ana K.; Schroth, Götz; Fearnside, Philip M.; Bergen, Scott; M. Venticinque, Eduardo; Costa, Carlos da (2006). "The future of deforestation in the Brazilian Amazon". Futures 38 (4): 432–453. doi:10.1016/j.futures.2005.07.011. 
  32. ^ a b Watkins and Griffiths, J. (2000). Forest Destruction and Sustainable Agriculture in the Brazilian Amazon: a Literature Review (Doctoral dissertation, The University of Reading, 2000). Dissertation Abstracts International, 15–17
  33. ^ Williams, M. (2006). Deforesting the Earth: From Prehistory to Global Crisis (Abridged ed.). Chicago, IL: The University of Chicago Press. ISBN 0226899470. 
  34. ^ Centre for International Forestry Research (CIFOR) (2004)
  35. ^ Steinfeld, Henning; Gerber, Pierre; Wassenaar, T. D.; Castel, Vincent (2006). Livestock's Long Shadow: Environmental Issues and Options. Food and Agriculture Organization of the United Nations. ISBN 9251055718. http://www.fao.org/docrep/010/a0701e/a0701e00.htm. Retrieved August 19, 2008. 
  36. ^ Margulis, Sergio (2004) (PDF). Causes of Deforestation of the Brazilian Amazon. Washington D.C.: The World Bank. ISBN 0821356917. http://www-wds.worldbank.org/servlet/WDSContentServer/WDSP/IB/2004/02/02/000090341_20040202130625/Rendered/PDF/277150PAPER0wbwp0no1022.pdf. Retrieved September 4, 2008. 
  37. ^ Barreto, P.; Souza Jr. C.; Noguerón, R.; Anderson, A. & Salomão, R. 2006. Human Pressure on the Brazilian Amazon Forests. Imazon. Retrieved September 28, 2006. (The Imazon web site contains many resources relating to the Brazilian Amazonia.)
  38. ^ INPE: Estimativas Anuais desde 1988 até 2009
  39. ^ Melillo, J. M.; McGuire, A. D.; Kicklighter, D. W.; Moore III, B.; Vörösmarty, C. J.; Schloss, A. L. (May 20, 1993). "Global climate change and terrestrial net primary production". Nature 363 (6426): 234–240. doi:10.1038/363234a0. 
  40. ^ a b Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich III, J.; Moore III, B.; Vörösmarty, C.J. (July 2000). "Climatic and biotic controls on annual carbon storage in Amazonian ecosystems". Global Ecology and Biogeography 9 (4): 315–335. doi:10.1046/j.1365-2699.2000.00198.x. 
  41. ^ Cox, Betts, Jones, Spall and Totterdell. 2000. "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model". Nature, November 9, 2000. (subscription required)
  42. ^ Radford, T. 2002. "World may be warming up even faster". The Guardian.
  43. ^ Houghton, J.T. et al. 2001. "Climate Change 2001: The Scientific Basis". Intergovernmental Panel on Climate Change.
  44. ^ Peters, C.M.; Gentry, A. H. & Mendelsohn, R. O. (1989). "Valuation of an Amazonian forest". Nature 339 (6227): 656–657. doi:10.1038/339655a0. 
  45. ^ Dean, Bartholomew. (2003) State Power and Indigenous Peoples in Peruvian Amazonia: A Lost Decade, 1990–2000. In The Politics of Ethnicity Indigenous Peoples in Latin American States David Maybury-Lewis, Ed. Harvard University Press
  46. ^ Cormier, L. (April 16, 2006). "A Preliminary Review of Neotropical Primates in the Subsistence and Symbolism of Indigenous Lowland South American Peoples". Ecological and Environmental Anthropology 2 (1): 14–32. http://eea.anthro.uga.edu/index.php/eea/article/view/10/11. Retrieved September 4, 2008. 
  47. ^ Amazon could shrink by 85% due to climate change, scientists say
  48. ^ Wynne, R. H.; Joseph, K. A.; Browder, J. O.; Summers, P. M. (2007). "A Preliminary Review of Neotropical Primates in the Subsistence and Symbolism of Indigenous Lowland South American Peoples". International Journal of Remote Sensing 28: 1299–1315. doi:10.1080/01431160600928609. http://eea.anthro.uga.edu/index.php/eea/article/viewArticle/23. Retrieved September 4, 2008. 
  49. ^ Asner, Gregory P.; Knapp, David E.; Cooper, Amanda N.; Bustamante, Mercedes M.C.; Olander, Lydia P. (June 2005). "Ecosystem Structure throughout the Brazilian Amazon from Landsat Observations and Automated Spectral Unmixing". Earth Interactions 9 (1): 1–31. doi:10.1175/EI134.1. 
  50. ^ Isaacson, Andy. 2007. With the Help of GPS, Amazonian Tribes Reclaim the Rain Forest. Wired 15.11: http://www.wired.com/science/planetearth/magazine/15-11/ps_amazon
  51. ^ Kuplich, Tatiana M. (October 2006). "Classifying regenerating forest stages in Amazônia using remotely sensed images and a neural network". Forest Ecology and Management 234 (1–3): 1–9. doi:10.1016/j.foreco.2006.05.066. 
  52. ^ Environmental News Service – Amazon Drought Worst in 100 Years
  53. ^ Drought Threatens Amazon Basin – Extreme conditions felt for second year running
  54. ^ "Amazon rainforest 'could become a desert'", The Independent, July 23, 2006. Retrieved September 28, 2006.
  55. ^ "Dying Forest: One year to save the Amazon", The Independent, July 23, 2006. Retrieved September 28, 2006.
  56. ^ "Climate change a threat to Amazon rainforest, warns WWF", World Wide Fund for Nature, March 22, 2006. Retrieved September 28, 2006.
  57. ^ 2010 Amazon drought record: 8 Gt extra CO2
  58. ^ "Amazon drought 'severe' in 2010, raising warming fears", BBC News

Further reading

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Amazon Rainforest — Geobox|Forest name = Amazon Rainforest native name = other name = category = image caption = Amazon rainforest, Salinopolis, Para, Brazil. image size = official name = etymology = motto = nickname = symbol = country = Brazil country1 = Peru… …   Wikipedia

  • Amazon Rainforest — ▪ region, South America  large, tropical rainforest occupying the drainage basin of the Amazon River and its tributaries in northern South America, and covering an area of 2,300,000 square miles (6,000,000 square km). Comprising about 40 percent… …   Universalium

  • Amazon Rainforest Lodge — (Икитос,Перу) Категория отеля: 2 звездочный отель Адрес: Margen Derecha Del Rio Momon …   Каталог отелей

  • Deforestation of the Amazon Rainforest — Timelapse of deforestation in the state of Rondonia in Brazil, from 2000 2010. The Amazon River flowing through the rainforest. The main sources of deforestation in the Amazo …   Wikipedia

  • Save the Amazon Rainforest Organisation — (STARO) is a charity that aims to save the Amazon rainforest from destruction based in London in the United Kingdom. IntroductionSTARO was created by Jessica Hatfield and Dieter Bratschi (Forestry Engineer of the Federal Institute of Technology… …   Wikipedia

  • List of plants of Amazon Rainforest vegetation of Brazil — This is a list of plants found in the wild in Amazon Rainforest vegetation of Brazil. The estimates from useful plants suggested that there are 800 plant species of economic or social value in this forest, according to Giacometti (1990). [cite… …   Wikipedia

  • Amazon weasel — Conservation status Least Concern (IUCN 3.1) Scientific classification Kingdom …   Wikipedia

  • Amazon — or Amazons may refer to: * Amazons, members of a legendary nation of female warriors in Greek mythology * more generally, any woman warrior ** History of women in the military ** Dahomey Amazons, an all female regiment of the African kingdom of… …   Wikipedia

  • Amazon Clipper Traditional — (Манаус,Бразилия) Категория отеля: Адрес: Avenida Coronel Teixeira, 1320 …   Каталог отелей

  • Amazon Conservation Team — (ACT) is a non profit organization that works in partnership with indigenous people of tropical America in conserving the biodiversity of the Amazon rainforest as well as the culture and land of its indigenous people.ACT was formed in 1995 by… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”