Materials for use in vacuum


Materials for use in vacuum

Materials for use in vacuum are materials showing very low rate of outgassing in vacuum, and, where applicable, tolerant to the bake-out temperatures. The requirements grow increasingly stringent with the desired degree of vacuum achievable in the vacuum chamber. The materials can produce gas by several mechanisms. Molecules of gases and water can be adsorbed on the material surface (therefore materials with low affinity to water have to be chosen, which eliminates many plastics). Materials may sublimate in vacuum (this excludes some metals and their alloys, most notably cadmium and zinc). Or the gases can be released from porous materials or from cracks and crevices. Traces of lubricants, residues from machining, can be present on the surfaces. A specific risk is outgassing of solvents absorbed in plastics after cleaning.

The gases liberated from the materials not only lower the vacuum quality, but also can be readsorbed on other surfaces, creating deposits and contaminating the chamber.

Yet another problem is diffusion of gases through the materials themselves. Atmospheric helium can diffuse even through Pyrex glass, even if slowly; this however is usually not an issue.

In addition to the gas-related issues, the materials have to maintain adequate strength through the entire required temperature range (sometimes reaching cryogenic temperatures), maintain their properties (elasticity, plasticity, electrical and thermal conductivity or lack of it, etc.), be possible to machine, and if possible not being overly expensive. Yet another concern is the thermal expansion coefficient match of adjanced parts.

Contents

Materials to avoid

Materials outgas by two mechanisms: release of adsorbed and absorbed gases, and evaporation of the material itself. The former can be reduced by a bakeout, the latter is an intrinsic property of the material.[1]

The most common sources of trouble in vacuum systems are:

  • Cadmium, often present in the form of cadmium plating, or in some soldering and brazing alloys
  • Zinc, problematic for high vacuum and higher temperatures, present in some construction alloys, e.g. brass
  • Magnesium
  • PVC, usually in the form of wire insulation
  • Paints
  • Many plastics, namely many plastic tapes

Materials for vacuum use

Metals

  • Austenitic stainless steels are the most common choice for high vacuum and ultra-high vacuum systems. Not all alloys are suitable; e.g. the free-machining 303 steel contains sulfur, which tends to outgas. Alloys with good weldability under argon arc welding are usually chosen.
    • 304 stainless steel is a common choice of a stainless steel.
    • 304L stainless steel, a low-carbon variant of 304 steel, is used for ultra-high vacuum systems.
    • 347 stainless steel does not accept high polish.
    • 321 stainless steel is chosen when low magnetic permeability is needed.
  • Mild steel can be used for moderate vacuums above 10-6 torr. Outgassing can be lowered with suitable (e.g. nickel) plating. It has high permeability to hydrogen and tendency to rust.
  • Aluminium and aluminium alloys are another class of frequently used materials. They are well-machinable and have low outgassing, unless the alloys contain higher proportion of zinc. The parts must not be anodized, as the oxide layer traps (and outgases) water vapor. Aluminium and its alloys have low strength at high temperatures, distort when being welded, and the copper-containing ones are poorly weldable. Aluminium wire rings can be used as cheap gaskets in demountable seals. Aluminium has high thermal conductivity, good corrosion resistance, and low solubility of hydrogen. Loss of strength at high temperatures limits its use in bakeable applications, but aluminium is advantageous for large-size systems due to its lower weight and lower cost than stainless steel. Use of aluminium is limited by difficulties in its welding and brazing. It can be used for x-ray windows.[1]
  • Aluminium bronze is a material looking and machining similar to brass. It is not susceptible to galling, which makes it suitable for sliding fits against stainless steel.
  • Nickel is widely used in vacuum technology, e.g. as mechanical parts in vacuum tubes. It is relatively low-cost, can be spot welded, can be easily machined, has high melting point and is resistant to many corrosive fluids and atmospheres. Its potential drawback is its ferromagnetism, which restricts applications that would be influenced by magnetic fields.[1]
  • Beryllium is used primarily for x-ray windows.
  • Oxygen-free copper is widely used. It is easily machined and has good corrosion resistance. It is unsuitable for bakeable vacuum envelopes due to its tendency to oxidize and create scales. Copper rings are used in demountable seals. Normal copper is unsuitable for high vacuum as it is difficult to outgas completely. Copper is insensitive to hydrogen and impermeable to hydrogen and helium, has low sensitivity to water vapor, but is attacked by mercury. Its strength falls sharply above 200 °C. Its vapor pressure becomes significant at above 500 °C.[1]
  • Brass is suitable for some applications. It has good corrosion resistance. Its zinc content may cause problems; zinc outgassing can be reduced by nickel-plating.
  • Indium wire is used as a gasket in demountable seals.
  • Gold wire is used as a gasket in demountable seals for ultra-high vacuum.
  • Zirconium is corrosion-resistant. It has low production of secondary electrons, so it is used as a coating of areas where reducing their production is important. It is used for neutron windows. It is costly and scarce, its uses are therefore limited. Zirconium and zirconium hydride are used for gettering.

Plastics

  • Some fluoropolymers, e.g. polyvinylidene fluoride, are suitable for use in vacuum. They have low outgassing and tolerant to higher temperatures.
    • Polytetrafluoroethylene is commonly used inside of vacuum systems. It is self-lubricating, a good electrical insulator, tolerant to fairly high temperatures, and has low outgassing. It is not suitable for barrier between vacuum and atmosphere, as it is somewhat permeable for gases.
  • Polyethylene is usable but requires thorough outgassing. Nalgene can be used as a cheaper alternative for Bell jars.
  • Vespel polyimide is very expensive, but machines well, has good electrical insulator properties and is compatible with ultra-high vacuum.
  • PVC, despite its high outgassing rate, can be used in limited applications for rough vacuum lines.
  • Nylon is self-lubricating but has high outgassing rate and high affinity to water.
  • Acrylics have high outgassing rate and high affinity to water.
  • Polycarbonates and polystyrene are good electrical insulators with moderate outgassing.
  • Some elastomers have sufficient vacuum properties:
    • Nitrile rubber is used for demountable vacuum seals.
    • Viton is used for demountable vacuum seals. It is better for lower pressures than nitrile rubber. It is bakeable to 200 °C.

Glasses and ceramics

  • Borosilicate glass is often used for smaller assemblies and for viewports. It can be machined and joined well. Glasses can be joined with metals.
  • Porcelain and alumina ceramics, when fully vitrified and therefore non-porous, are excellent insulators usable to 1500 °C. Some ceramics can be machined. Ceramics can be joined with metals.

Lubricants

Lubrication of moving parts is a problem for vacuum. Many lubricants have inacceptable outgassing rates, others (e.g. graphite) lose lubricating properties.


Materials for use in space

In addition to the concerns above, materials for use in spacecraft applications have to cope with radiation damage and high-intensity ultraviolet radiation, thermal loads from solar radiation, radiation cooling of the vehicle in other directions, and heat produced within the spacecraft's systems. Another concern, for orbits closer to Earth, is the presence of atomic oxygen, leading to corrosion of exposed surfaces; aluminium is an especially sensitive material.

Corrosion-sensitive surfaces can be protected by a suitable plating, most often with gold; a silica layer is also possible. However the coating layer is subject to erosion by micrometeorites.


References


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Vacuum forming — Vacuum forming, commonly known as vacuforming, is a simplified version of thermoforming, whereby a sheet of plastic is heated to a forming temperature, stretched onto or into a single surface mold, and held against the mold by applying vacuum… …   Wikipedia

  • Vacuum sewer — Vacuum sewers were first installed in Europe in 1882 but until the last 30 years it had been relegated to a niche market. The first who has applied the negative pressure drainage (so called vacuum sewerage) was the Dutch engineer Liernur in the… …   Wikipedia

  • Vacuum — This article is about empty physical space or the absence of matter. For other uses, see Vacuum (disambiguation). Free space redirects here. For other uses, see Free space (disambiguation). Pump to demonstrate vacuum In everyday usage, vacuum is… …   Wikipedia

  • Vacuum tube — This article is about the electronic device. For experiments in an evacuated pipe, see free fall. For the transport system, see pneumatic tube. Modern vacuum tubes, mostly miniature style In electronics, a vacuum tube, electron tube (in North… …   Wikipedia

  • Vacuum pump — A vacuum pump is a device that removes gas molecules from a sealed volume in order to leave behind a partial vacuum. The vacuum pump was invented in 1650 by Otto von Guericke. Types Pumps can be broadly categorized according to three… …   Wikipedia

  • materials science — the study of the characteristics and uses of various materials, as glass, plastics, and metals. [1960 65] * * * Study of the properties of solid materials and how those properties are determined by the material s composition and structure, both… …   Universalium

  • Vacuum cleaner — Cylinder vacuum cleaner for home use. French train vacuum cleaner …   Wikipedia

  • Vacuum distillation — At atmospheric pressure, dimethyl sulfoxide boils at 189°C. Under a vacuum, it distills off into the connected receiver at only 70°C. Vacuum distillation is a method of distillation whereby the pressure above the liquid mixture to be distilled is …   Wikipedia

  • vacuum technology — Introduction       all processes and physical measurements carried out under conditions of below normal atmospheric pressure. A process or physical measurement is generally performed in a vacuum for one of the following reasons: (1) to remove the …   Universalium

  • Materials science — Simulation of the outside of the Space Shuttle as it heats up to over 1,500 °C (2,730 °F) during re entry into the Earth s atmosphere Materials science is an interdisciplinary field applying the properties of matter to various areas of… …   Wikipedia