Diophantine geometry

Diophantine geometry

In mathematics, diophantine geometry is one approach to the theory of Diophantine equations, formulating questions about such equations in terms of algebraic geometry over a ground field K that is not algebraically closed, such as the field of rational numbers or a finite field, or more general commutative ring such as the integers. A single equation defines a hypersurface, and simultaneous Diophantine equations give rise to a general algebraic variety V over K; the typical question is about the nature of the set V(K) of points on V with co-ordinates in K, and by means of height functions quantitative questions about the "size" of these solutions may be posed, as well as the qualitative issues of whether any points exist, and if so whether there are an infinite number. Given the geometric approach, the consideration of homogeneous equations and homogeneous co-ordinates is fundamental, for the same reasons that projective geometry is the dominant approach in algebraic geometry. Rational number solutions therefore are the primary consideration; but integral solutions (i.e. lattice points) can be treated in the same way as an affine variety may be considered inside a projective variety that has extra points at infinity.

The general approach of diophantine geometry is illustrated by Faltings' theorem (a conjecture of L. J. Mordell) starting that an algebraic curve C of genus g > 1 over the rational numbers has only finitely many rational points. The first result of this kind may have been the theorem of Hilbert and Hurwitz dealing with the case g = 0. The theory consists both of theorems and many conjectures and open questions.

Contents

Background

Serge Lang published a book Diophantine Geometry in the area, in 1962. The traditional arrangement of material on Diophantine equations was by degree and number of variables, as in Mordell's Diophantine Equations (1969). Mordell's book starts with a remark on homogeneous equations f = 0 over the rational field, attributed to C. F. Gauss, that non-zero solutions in integers (even primitive lattice points) exist if non-zero rational solutions do, and notes a caveat of L. E. Dickson, which is about parametric solutions. The Hilbert-Hurwitz result from 1890 reducing the diophantine geometry of curves of genus 0 to degrees 1 and 2 (conic sections) occurs in Chapter 17, as does Mordell's conjecture. Siegel's theorem on integral points occurs in Chapter 28. Mordell's theorem on the finite generation of the group of rational points on an elliptic curve is in Chapter 16, and integer points on the Mordell curve in Chapter 26.

In a hostile review of Lang's book, Mordell wrote

In recent times, powerful new geometric ideas and methods have been developed by means of which important new arithmetical theorems and related results have been found and proved and some of these are not easily proved otherwise. Further, there has been a tendency to clothe the old results, their extensions, and proofs in the new geometrical language. Sometimes, however, the full implications of results are best described in a geometrical setting. Lang has these aspects very much in mind in this book, and seems to miss no opportunity for geometric presentation. This accounts for his title "Diophantine Geometry."[1]

He notes that the content of the book is largely versions of the Mordell-Weil theorem, Thue-Siegel-Roth theorem, Siegel's theorem, with a treatment of Hilbert's irreducibility theorem and applications (in the style of Siegel). Leaving aside issues of generality, and a completely different style, the major mathematical difference between the two books is that Lang used abelian varieties and offered a proof of Siegel's theorem, while Mordell noted that the proof "is of a very advanced character" (p. 263).

Despite a bad press initially, Lang's conception has been sufficiently widely accepted for a 2006 tribute to call the book "visionary".[2] A larger field sometimes called "arithmetic of algebraic varieties" now includes diophantine geometry with class field theory, complex multiplication, local zeta-functions and L-functions.[3] Paul Vojta wrote:

While others at the time shared this viewpoint (e.g., Weil, Tate, Serre), it is easy to forget that others did not, as Mordell's review of Diophantine Geometry attests.[4]

See also

References

Notes

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Glossary of arithmetic and Diophantine geometry — This is a glossary of arithmetic and Diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of… …   Wikipedia

  • Geometry — (Greek γεωμετρία ; geo = earth, metria = measure) is a part of mathematics concerned with questions of size, shape, and relative position of figures and with properties of space. Geometry is one of the oldest sciences. Initially a body of… …   Wikipedia

  • Diophantine equation — In mathematics, a Diophantine equation is an indeterminate polynomial equation that allows the variables to be integers only. Diophantine problems have fewer equations than unknown variables and involve finding integers that work correctly for… …   Wikipedia

  • Geometry of numbers — In number theory, the geometry of numbers is a topic and method arising from the work of Hermann Minkowski, on the relationship between convex sets and lattices in n dimensional space. It has frequently been used in an auxiliary role in proofs,… …   Wikipedia

  • Erdős-Diophantine graph — In Diophantine geometry, an Erdős Diophantine graph, named after Paul Erdős and Diophantus of Alexandria, is a complete graph with vertices located on the integer square grid scriptstylemathbb{Z}^2 such that all mutual distances between the… …   Wikipedia

  • Algebraic geometry — This Togliatti surface is an algebraic surface of degree five. Algebraic geometry is a branch of mathematics which combines techniques of abstract algebra, especially commutative algebra, with the language and the problems of geometry. It… …   Wikipedia

  • Number theory — A Lehmer sieve an analog computer once used for finding primes and solving simple diophantine equations. Number theory is a branch of pure mathematics devoted primarily to the study of the integers. Number theorists study prime numbers (the… …   Wikipedia

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • Zlil Sela — is an Isareli mathematician working in the area of geometric group theory.He is a Professor of Mathematics at the Hebrew University of Jerusalem. Sela is known for the solution of the isomorphism problem for torsion free word hyperbolic groups… …   Wikipedia

  • Serge Lang — Infobox Scientist name = Serge Lang box width = 26em image width = 250px caption = Serge Lang (1927 2005) birth date = birth date|1927|5|19 birth place = Paris, France death date = death date and age|2005|9|12|1927|5|19 death place = Berkeley,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”