Orthogonal projection
inside Petrie polygon
Type Regular 8-polytope
Family orthoplex
Schläfli symbol {36,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
7-faces 256 {36}7-simplex t0.svg
6-faces 1024 {35}6-simplex t0.svg
5-faces 1792 {34}5-simplex t0.svg
4-faces 1792 {33}4-simplex t0.svg
Cells 1120 {3,3}3-simplex t0.svg
Faces 448 {3}2-simplex t0.svg
Edges 112
Vertices 16
Vertex figure 7-orthoplex
Petrie polygon hexadecagon
Coxeter groups C8, [36,4]
D8, [35,1,1]
Dual 8-cube
Properties convex

In geometry, an 8-orthoplex, or 8-cross polytope is a regular 8-polytope with 16 vertices, 112 edges, 448 triangle faces, 1120 tetrahedron cells, 1792 5-cells 4-faces, 1792 5-faces, 1024 6-faces, and 256 7-faces.

It has two constructive forms, the first being regular with Schläfli symbol {36,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {35,1,1} or Coxeter symbol 511.


Alternate names

  • Octacross, derived from combining the family name cross polytope with oct for eight (dimensions) in Greek
  • Diacosipentacontahexazetton as a 256-facetted 8-polytope (polyzetton)


There are two Coxeter groups associated with the 8-cube, one regular, dual of the octeract with the C8 or [4,3,3,3,3,3,3] symmetry group, and a lower symmetry with two copies of 7-simplex facets, alternating, with the D8 or [35,1,1] symmetry group.


orthographic projections
B8 B7
8-cube t7.svg 8-cube t7 B7.svg
[16] [14]
B6 B5
8-cube t7 B6.svg 8-cube t7 B5.svg
[12] [10]
B4 B3 B2
8-cube t7 B4.svg 8-cube t7 B3.svg 8-cube t7 B2.svg
[8] [6] [4]
A7 A5 A3
8-cube t7 A7.svg 8-cube t7 A5.svg 8-cube t7 A3.svg
[8] [6] [4]

Related tessellations

Related polytopes

It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is an 8-hypercube, or octeract.

It is used in its alternated form 511 with the 8-simplex to form the 521 honeycomb.

Cartesian coordinates

Cartesian coordinates for the vertices of an 8-cube, centered at the origin are

(±1,0,0,0,0,0,0,0), (0,±1,0,0,0,0,0,0), (0,0,±1,0,0,0,0,0), (0,0,0,±1,0,0,0,0),
(0,0,0,0,±1,0,0,0), (0,0,0,0,0,±1,0,0), (0,0,0,0,0,0,0,±1), (0,0,0,0,0,0,0,±1)

Every vertex pair is connected by an edge, except opposites.


  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 8D uniform polytopes (polyzetta), x3o3o3o3o3o3o4o - ek

External links

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • 10-orthoplex — Decacross Orthogonal projection inside Petrie polygon Type Regular 10 polytope Family orthoplex Schläfli symbol {38,4} {37,1,1} …   Wikipedia

  • Cross-polytope — In geometry, a cross polytope,[1] orthoplex,[2] hyperoctahedron, or cocube is a regular, convex polytope that exists in any number of dimensions. The vertices of a cross polytope are all the permutations of (±1, 0, 0, …, 0). The cross polytope is …   Wikipedia

  • Hexicated 7-simplex — 7 simplex …   Wikipedia

  • Stericated 5-cube — 5 cube …   Wikipedia

  • Pentellated 6-simplex — 6 simplex …   Wikipedia

  • Pentellated 6-cube — 6 cube …   Wikipedia

  • Coxeter group — In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry …   Wikipedia

  • Stericated 5-simplex — 5 simplex …   Wikipedia

  • Semiregular k 21 polytope — In geometry, a semiregular k21 polytope is a polytope in (k+4) dimensions constructed from the En Coxeter group, and having only regular polytope facets. The family was named by Coxeter as k21 by its bifurcating Coxeter Dynkin diagram, with a… …   Wikipedia

  • 10-cube — Dekeract Orthogonal projection inside Petrie polygon Orange vertices are doubled, and central yellow one has four Type Regular 10 polytope Family hypercube Schläfli symbol {4,3 …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.