Woldemar Voigt

Woldemar Voigt

name = Woldemar Voigt

image_width = 150px
caption = Woldemar Voigt (1850 - 1919)
birth_date = 2 September 1850
birth_place = Leipzig, Saxony
death_date = 13 December 1919
death_place = Göttingen, Germany
residence = Germany
nationality = German
field = Physicist
work_institution = Georg-August University of Göttingen
alma_mater = Universität Königsberg
doctoral_advisor = Franz Ernst Neumann
doctoral_students = Paul Drude
known_for = Voigt notation
Voigt profile
Voigt effect
prizes =
religion =
footnotes =

Woldemar Voigt (2 September 1850 – 13 December 1919) was a German physicist.

He was born in Leipzig, and died in Göttingen. He was a student of Franz Ernst Neumann. He worked on crystal physics, thermodynamics and electro-optics. His main work was the "Lehrbuch der Kristallphysik" (textbook on crystal physics), first published in 1910. He discovered the Voigt effect in 1898. The word tensor in its current meaning was introduced by him in 1899. Voigt profile and Voigt notation are named after him. He was also an amateur musician and became known as a Bach expert (see External links).

In 1887 Voigt [Voigt (1887a), primary sources] formulated a form of the Lorentz transformation between a rest frame of reference and a frame moving with speed v in the x direction. However, as Voigt himself declared the transformation was aimed for a specific problem and did not carry with it the ideas of a general coordinate transformation, as is the case in relativity theory.

The Voigt transformation

In modern notation Voigt's transformation was:x^prime = x - vt:y^prime = y/gamma:z^prime = z/gamma:t^prime = t - vx/c^2where gamma = 1/sqrt{1 - v^2/c^2}.If the right-hand sides of his equations are multiplied by gamma they are the modern Lorentz transformation. Hermann Minkowski said in 1908 that the transformations which play the main role in the principle of relativity were first examined by Voigt in 1887. Also Hendrik Lorentz (1909) is on record as saying he could have taken these transformations into his theory of electrodynamics, if only he had known of them, rather than developing his own. It is interesting then to examine the consequences of these transformations from this point of view. Lorentz might then have seen that the transformation introduced relativity of simultaneity, and also time dilation. However, the magnitude of the dilation was greater than the now accepted value in the Lorentz transformations. Moving clocks, obeying Voigt's time transformation, indicate an elapsed time Delta t_mathrm{Voigt} = gamma^{-2}Delta t = gamma^{-1}Delta t_mathrm{Lorentz}, while stationary clocks indicate an elapsed time Delta t.

If Lorentz had adopted this transformation, it would have been a matter of experiment to decide between them and the modern Lorentz transformation. Since Voigt's transformation preserves the speed of light in all frames, the Michelson-Morley experiment and the Kennedy-Thorndike experiment can not distinguish between the two transformations. The crucial question is the issue of time dilation. The experimental measurement of time dilation by Ives and Stillwell (1938) and others settled the issue in favor of the Lorentz transformation.



;Primary Sources
*; Reprinted with additional comments by Voigt in "Physikalische Zeitschrift" XVI, 381 - 386 (1915).

*Citation | author=Voigt, W. | year=1887b | journal=Göttinger Nachrichten | title= [http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/?IDDOC=55436 Theorie des Lichts für bewegte Medien] |pages= 177-238 |issue=8 ; This article ends with the announcement that in a forthcoming article the principles worked out so far shall be applied to the problems of reflection and refraction. The article contains on p. 235, last paragraph, and on p. 236, 2nd paragraph, a judgment on the Michelson experiment of 1886, which Voigt, after a correspondence with H. A. Lorentz in 1887 and 1888, has partly withdrawn in the article announced, namely in a footnote in Voigt (1888). According to Voigt's first judgment, the Michelson experiment must yield a null result, independently of whether the Earth transports the luminiferous aether with it (Fizeau's 1st aether hypothesis), or whether the Earth moves through an entirely independent, self-consistent universal luminiferous aether (Fizeau's 2nd aether hypothesis).

*Citation | author=Voigt, W. | year=1888 | journal=Annalen der Physik | title= Theorie des Lichts für bewegte Medien |pages= 370-396, 524-551 |volume=35 ; In a footnote on p. 390 of this article, Voigt corrects his earlier judgment, made in "Göttinger Nachrichten" No. 8, p. 235 and p. 236 (1887), and states indirectly that, after a correspondence with H. A. Lorentz, he can no longer maintain that in the case of the validity of Fizeau's 2nd aether hypothesis the Michelson experiment must yield a null result too.

*Citation | author=Bucherer, A. H.| year=1908 | title=Messungen an Becquerelstrahlen. Die experimentelle Bestätigung der Lorentz-Einsteinschen Theorie | journal=Physikalische Zeitschrift | volume =9 | issue=22 |pages =755-762; For Minkowski's statement see p. 762.

*Citation | author=Lorentz, H.A | year=1916 | title= [http://www.archive.org/details/electronstheory00lorerich The theory of electrons] | place =Leipzig & Berlin| publisher=B.G. Teubner; See p. 198.

;Secondary sources

*Citation | author=Macrossan, M. N. | year=1986 | journal=Brit. J. Phil. Sci. | title= [http://espace.library.uq.edu.au/view/UQ:9560 A Note on Relativity Before Einstein] |pages= 232-234 |volume=37

External links

* [http://www.mathpages.com/rr/s1-04/1-04.htm The relativity of light (MathPages)]
* [http://homepages.bw.edu/bachbib/script/bach1.pl?0=Voigt,%20Woldemar Bach expert Woldemar Voigt]

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Woldemar Voigt — [ˈvɔldəmar ˈfoːkt] (* 2. September 1850 in Leipzig; † 13. Dezember 1919 in Göttingen) war ein deutscher Physiker. Er lehrte theoretische Physik an der Georg August Universität in Göttingen …   Deutsch Wikipedia

  • Woldemar Voigt — Nacimiento 02 de septiembre de 1850 Leipzig Fallecimiento 13 de diciembre de 1919 Gotinga, Hanover (Alemania) …   Wikipedia Español

  • Woldemar Voigt — Pour les articles homonymes, voir Voigt. Woldemar Voigt Woldemar Voigt est un physicien allemand, né le 2 septembre 1850 à Leipzig et mort le …   Wikipédia en Français

  • Voigt — ist ein Familienname. Herkunft und Bedeutung Relative Häufigkeit des Namens Voigt in Deutschland. Voigt ist eine Schreibweise von Vogt (gesprochen [foːkt] mit Dehnungs i). Es kommt von advocatus …   Deutsch Wikipedia

  • Voigt — est un patronyme partagé par plusieurs personnalités ainsi qu un nom en mathématique. Patronymes Angela Voigt, née Schmalfeld, née le 18 mai 1951, est une ancienne athlète est allemande, spécialisée dans le pentathlon, puis le saut en… …   Wikipédia en Français

  • Voigt — es un apellido de origen alemán. Puede referirse a: Georg Voigt, historiador. Jens Voigt, ciclista. Udo Voigt, político y militar. Woldemar Voigt, físico. Abreviaturas de botánicos Alf.Voigt (Julius) Alfred Voigt 1864 1935. Alb.Voigt Albert Voigt …   Wikipedia Español

  • Voigt — is a surname, and may refer to:* Deborah Voigt, American opera singer * Cynthia Voigt * Edwin Edgar Voigt * Edwin de Voigt, artist and leisure manager * George Voigt, German historian * Jens Voigt, professional road cyclist * Jon Voight, American …   Wikipedia

  • Voigt-Effekt —   [ foːkt ; nach Woldemar Voigt], Magnetooptik …   Universal-Lexikon

  • Voigt-Transformation — Die Lorentz Transformation verknüpft wie die Galilei Transformation die Koordinaten x,y,z,t eines Ereignisses in einem bestimmten Inertialsystem, mit den Koordinaten x ,y ,z ,t des gleichen Ereignisses in einem anderen Inertialsystem, welches in… …   Deutsch Wikipedia

  • Voigt-Effekt — Der Voigt Effekt beschreibt in der Magnetooptik die Doppelbrechung in einem transparenten, gasförmigen Medium, bei einem konstanten Magnetfeld senkrecht zur Ausbreitungsrichtung des Lichtes. Er ist stärker als ähnliche Effekte, wie der Cotton… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.