Molecular electronic transition


Molecular electronic transition

Molecular electronic transitions take place when electrons in a molecule are excited from one energy level to a higher energy level. The energy change associated with this transition provides information on the structure of a molecule and determines many molecular properties such as color. The relationship between the energy involved in the electronic transition and the frequency of radiation is given by Planck's law.

Contents

Organic molecules and other molecules

The electronic transitions in organic compounds and some other compounds can be determined by ultraviolet-visible spectroscopy, provided that transitions in the ultraviolet (UV) or visible range of the electromagnetic spectrum exist for this compound.[1][2] Electrons occupying a HOMO of a sigma bond can get excited to the LUMO of that bond. This process is denoted as a σσ* transition. Likewise promotion of an electron from a π-bonding orbital to an antibonding π orbital* is denoted as a ππ* transition. Auxochromes with free electron pairs denoted as n have their own transitions, as do aromatic pi bond transitions. Sections of molecules which can undergo such detectable electron transitions can be referred to as chromophores since such transitions absorb electromagnetic radiation (light), which may be hypothetically perceived as color somewhere in the electromagnetic spectrum. The following molecular electronic transitions exist:

σσ*
ππ*
nσ*
nπ*
aromatic π → aromatic π*

In addition to these assignments, electronic transitions also have so-called bands associated with them. The following bands are defined: the R-band from the German radikalartig or radical-like, the K-band from the German Konjugierte or conjugated, B-band from benzoic and the E-band from ethylenic (system devised by A. Burawoy in 1930).[3] For example, the absorption spectrum for ethane shows a σ → σ* transition at 135 nm and that of water a nπ* transition at 167 nm with an extinction coefficient of 7,000. Benzene has three aromatic π → π* transitions; two E-bands at 180 and 200 nm and one B-band at 255 nm with extinction coefficients respectively 60,000 , 8,000 and 215. These absorptions are not narrow bands but are generally broad because the electronic transitions are superimposed on the other molecular energy states.

Solvent shifts

The electronic transitions of molecules in solution can depend strongly on the type of solvent with additional bathochromic shifts or hypsochromic shifts.

Line spectra

Spectral lines are associated with atomic electronic transitions and polyatomic gases have their own absorption band system.[4]

See also

  • Atomic electron transition

References

  1. ^ Morrill, Terence C.; Silverstein, Robert M.; Bassler, G. Clayton (1981). Spectrometric identification of organic compounds. New York: Wiley. ISBN 0-471-02990-4. 
  2. ^ Crouch, Stanley; Skoog, Douglas A. (2007). Principles of instrumental analysis. Australia: Thomson Brooks/Cole. pp. 335–398. ISBN 0-495-01201-7. 
  3. ^ Burawoy, A. (1930). "Licht-Absorption und Konstitution, I. Mitteil.: Homöopolare organische Verbindungen". Berichte der deutschen chemischen Gesellschaft (A and B Series) 63: 3155. doi:10.1002/cber.19300631130 
  4. ^ Herzberg, Gerhard (1950). Molecular spectra and molecular structure. Princeton, N.J: Van Nostrand. ISBN 0-89464-270-7. 

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Molecular orbital diagram — A molecular orbital diagram, or MO diagram for short, is a qualitative descriptive tool explaining chemical bonding in molecules in terms of molecular orbital theory in general and the Linear combination of atomic orbitals molecular orbital… …   Wikipedia

  • Transition électronique moléculaire — Les transitions électroniques moléculaires se produisent lorsque les électrons de valence sont excités à partir d un niveau d énergie vers un niveau plus élevé. L écart d énergie associé avec cette transition fournit de l information sur la… …   Wikipédia en Français

  • Molecular wires — (or sometimes called molecular nanowires) are molecular scale objects which conduct electrical current. They are the fundamental building blocks for molecular electronic devices. Their typical diameters are less than three nanometers, while their …   Wikipedia

  • transition element — Chem. any element in any of the series of elements with atomic numbers 21 29, 39 47, 57 79, and 89 107, that in a given inner orbital has less than a full quota of electrons. Also called transition metal. [1920 25] * * * Any chemical element with …   Universalium

  • Molecular electronics — For quantum mechanical study of the electron distribution in a molecule, see stereoelectronics. Molecular electronics, sometimes called moletronics, involves the study and application of molecular building blocks for the fabrication of electronic …   Wikipedia

  • Molecular scale electronics — Part of a series of articles on Nanoelectronics Single molecule electronics …   Wikipedia

  • Molecular wire — Part of a series of articles on Nanoelectronics Single molecule electronics …   Wikipedia

  • Molecular spectra or band spectra — Band spectra is the name given to group of lines so closely spaced and arranged in regular sequence that appears to be a band. It is coloured band separated by dark space on the two sides and arranged in regular sequence. In one band there are… …   Wikipedia

  • Molecular dynamics — (MD) is a computer simulation of physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a period of time, giving a view of the motion of the atoms. In the most common version, the trajectories of molecules… …   Wikipedia

  • Electronic correlation — refers to the interaction between electrons in a quantum system whose electronic structure is being considered. The term correlation stems from mathematical statistics and means that two distribution functions, f and g , are not independent of… …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.