Coxeter–Dynkin diagram


Coxeter–Dynkin diagram
Coxeter-Dynkin diagrams for the fundamental finite Coxeter groups
Coxeter-Dynkin diagrams for the fundamental affine Coxeter groups

In geometry, a Coxeter–Dynkin diagram (or Coxeter diagram, Coxeter graph) is a graph with numerically labeled edges (called branches) representing the spatial relations between a collection of mirrors (or reflecting hyperplanes). It describes a kaleidoscopic construction: each graph node represents a mirror (domain facet) and the label attached to a branch encodes the dihedral angle order between two mirrors (on a domain ridge). An unlabeled branch implicitly represents order-3.

Each diagram represents a Coxeter group, and Coxeter groups are classified by their associated diagrams.

Dynkin diagrams are closely related objects, which differ from Coxeter diagrams in two respects: firstly, branches labeled "4" or greater are directed, while Coxeter diagrams are undirected; secondly, Dynkin diagrams must satisfy an additional (crystallographic) restriction, namely that the only allowed branch labels are 2, 3, 4, and 6. See Dynkin diagrams for details. Dynkin diagrams correspond to and are used to classify root systems and therefore semisimple Lie algebras.[1]

Contents

Description

Branches of a Coxeter–Dynkin diagram are labeled with a rational number p, representing a dihedral angle of 180°/p. When p = 2 the angle is 90 degrees and the mirrors have no interaction, so the branch can be omitted from the diagram. If a branch is unlabeled, it is assumed to have p = 3, representing an angle of 60 degrees. Two parallel mirrors have an branch marked with "∞". In principle, n mirrors can be represented by a complete graph in which all n(n − 1)/2 branches are drawn. In practice, nearly all interesting configurations of mirrors include a number of right angles, so the corresponding branches are omitted.

Geometric visualizations

The Coxeter-Dynkin diagram can be seen as a graphic description of the fundamental domain of mirrors. A mirror represents a hyperplane within a given dimensional spherical or Euclidean or hyperbolic space. (In 2D spaces, a mirror is a line, and in 3D a mirror is a plane).

These visualizations show the fundamental domains for 2D and 3D Euclidean groups, and 2D spherical groups. For each the Coxeter diagram can be deduced by identifying the hyperplane mirrors and labelling their connectivity, ignoring 90 degree dihedral angles (order 2).

Coxeter-dynkin plane groups.png
Coxeter groups in the plane with equivalent diagrams. Domain mirrors are labeled as branch m1, m2, etc. Vertices are colored by their reflection order. The prismatic group {\tilde{I}}_1x{\tilde{I}}_1 is shown as a doubling of the {\tilde{C}}_2, but can also be created as rectangular domains from doubling the {\tilde{G}}_2 triangles. The {\tilde{A}}_2 is a doubling of the {\tilde{G}}_2 triangle.
Coxeter-Dynkin 3-space groups.png
Coxeter groups in 3-space with diagrams. Mirrors (triangle faces) are labeled by opposite vertex 0..3. Branches are colored by their reflection order.
{\tilde{C}}_3 fills 1/48 of the cube. {\tilde{B}}_3 fills 1/24 of the cube. {\tilde{A}}_3 fills 1/12 of the cube.
Coxeter-Dynkin sphere groups.png
Coxeter groups in the sphere with equivalent diagrams. One fundamental domain is outlined in yellow. Domain vertices (and graph branches) are colored by their reflection order.

Application with uniform polytopes

Coxeter–Dynkin diagrams can explicitly enumerate nearly all classes of uniform polytope and uniform tessellations. Every uniform polytope with pure reflective symmetry (all but a few special cases have pure reflectional symmetry) can be represented by a Coxeter-Dynkin diagram with permutations of markups. Each uniform polytope can be generated using such mirrors and a single generator point: mirror images create new points as reflections, then polytope edges can be defined between points and a mirror image point. Faces can be constructed by cycles of edges created, etc. To specify the generating vertex, one or more nodes are marked with rings, meaning that the vertex is not on the mirror(s) represented by the ringed node(s). (If two or more mirrors are marked, the vertex is equidistant from them.) A mirror is active (creates reflections) only with respect to points not on it. A diagram needs at least one active node to represent a polytope.

All regular polytopes, represented by Schläfli symbol symbol {pqr, ...}, can have their fundamental domains represented by a set of n mirrors with a related Coxeter–Dynkin diagram of a line of nodes and branches labeled by pqr, ..., with the first node ringed.

Uniform polytopes with one ring correspond to generator points at the corners of the fundamental domain simplex. Two rings correspond to the edges of simplex and have a degree of freedom, with only the midpoint as the uniform solution for equal edge lengths. In general k-rings generators are on k-faces of the simplex, and if all the nodes are ringed, the generator point is in the interior of the simplex.

A secondary markup convers a special case nonreflectional symmetry uniform polytopes. These cases exist as alternations of reflective symmetry polytopes. This mark up removes the central dot of a ringed node, called a hole (circles with nodes removed), to imply alternate nodes deleted. The resulting polytope will have a subsymmetry of the original Coxeter group. If all the nodes are holes, the figure is considered a snub.

  • A single node represents a single mirror. This is called group A1. If ringed this creates a line segment perpendicular to the mirror, represented as {}.
  • Two unattached nodes represent two perpendicular mirrors. If both nodes are ringed, a rectangle can be created, or a square if the point is at equal distance from both mirrors.
  • Two nodes attached by an order-n branch can create an n-gon if the point is on one mirror, and a 2n-gon if the point is off both mirrors. This forms the I1(n) group.
  • Two parallel mirrors can represent an infinite polygon I1(∞) group, also called I~1.
  • Three mirrors in a triangle form images seen in a traditional kaleidoscope and can be represented by three nodes connected in a triangle. Repeating examples will have branches labeled as (3 3 3), (2 4 4), (2 3 6), although the last two can be drawn as a line (with the 2 branches ignored). These will generate uniform tilings.
  • Three mirrors can generate uniform polyhedra; including rational numbers gives the set of Schwarz triangles.
  • Three mirrors with one perpendicular to the other two can form the uniform prisms.

Example BC3 polytopes

For example, the BC3 Coxeter group has a diagram: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png. This is also called octahedral symmetry.

There are 7 convex uniform polyhedra that can be constructed from this symmetry group and 3 from its alternation subsymmetries, each with a uniquely marked up Coxeter-Dynkin diagram. The Wythoff symbol represents a special case of the Coxeter diagram for rank 3 graphs, with all 3 branch orders named, rather than suppressing the order 2 branches. The Wythoff symbol is able to handle the snub form, but not general alternations without all nodes ringed.

Name Cube Truncated cube Cuboctahedron Truncated octahedron Octahedron Rhombi-cuboctahedron Truncated cuboctahedron Snub cube Tetrahedron Icosahedron
Image Uniform polyhedron-43-t0.png Uniform polyhedron-43-t01.png Uniform polyhedron-43-t1.png Uniform polyhedron-43-t12.png Uniform polyhedron-43-t2.png Uniform polyhedron-43-t02.png Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t2.png Uniform polyhedron-43-h01.png
Coxeter
diagram
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Wythoff
symbol
3 | 2 4 3 2 | 4 2 | 4 3 4 2 | 3 4 | 2 3 4 3 | 2 4 3 2 | | 4 3 2    
Symmetry group Oh O Td Th
*432 432 *332 3*2
[4,3] [4,3]+ [1+,4,3] =[3,3] [4,3+]

Cartan Matrices

Every Coxeter diagram has a corresponding Cartan matrix. All Coxeter group Cartan matrices are symmetric because their root vectors are normalized. The Cartan matrix element ai,j = aj,i = -2*cos(π/p) where p is the branch order between the pairs of mirrors.

Rank 2 Coxeter diagrams and their corresponding Cartan matrices are given here. The Cartan matrices for higher rank groups can be as simply constructed with the matrix element pairs corresponding between each pair of mirrors.

The determinant the Cartan matrix determines whether a group is finite (positive), affine (zero), or hyperbolic (negative). A hyperbolic group is compact if all subgroups are finite (i.e. have positive determinants).

Rank 2 Coxeter group diagrams
Symmetry
order
p
Group
name
Coxeter diagram Cartan matrix
\left [\begin{matrix}2&a_{12}\\a_{21}&2\end{matrix}\right ] Determinant

(4-a21*a12)

Finite (Determinant>0)
2 I2(2) = A1xA1 CDel node.pngCDel 2.pngCDel node.png \left [\begin{smallmatrix}2&0\\0&2\end{smallmatrix}\right ] 4
3 I2(3) = A2 CDel node.pngCDel 3.pngCDel node.png \left [\begin{smallmatrix}2&-1\\-1&2\end{smallmatrix}\right ] 3
4 I2(4) = BC2 CDel node.pngCDel 4.pngCDel node.png \left [\begin{smallmatrix}2&-\sqrt{2}\\-\sqrt{2}&2\end{smallmatrix}\right ] 2
5 I2(5) = H2 CDel node.pngCDel 5.pngCDel node.png \left [\begin{smallmatrix}2&-\phi\\-\phi&2\end{smallmatrix}\right ] 4sin 2(π / 5)

=(5-\sqrt{5})/2

~1.38196601125

6 I2(6) = G2 CDel node.pngCDel 6.pngCDel node.png \left [\begin{smallmatrix}2&-\sqrt{3}\\-\sqrt{3}&2\end{smallmatrix}\right ] 1
8 I2(8) CDel node.pngCDel 8.pngCDel node.png \left [\begin{smallmatrix}2&-2\cos(\pi/8)\\-2\cos(\pi/8)&2\end{smallmatrix}\right ] 2-\sqrt{2}

~0.58578643763

10 I2(10) CDel node.pngCDel 10.pngCDel node.png \left [\begin{smallmatrix}2&-2\cos(\pi/10)\\-2\cos(\pi/10)&2\end{smallmatrix}\right ] 4sin 2(π / 10)

=(3-\sqrt{5})/2

~0.38196601125

12 I2(12) CDel node.pngCDel 12.pngCDel node.png \left [\begin{smallmatrix}2&-2\cos(\pi/12)\\-2\cos(\pi/12)&2\end{smallmatrix}\right ] 2-\sqrt{3}

~0.26794919243

p I2(p) CDel node.pngCDel p.pngCDel node.png \left [\begin{smallmatrix}2&-2\cos(\pi/p)\\-2\cos(\pi/p)&2\end{smallmatrix}\right ] 4sin 2(π / p)
Affine (Determinant=0)
I2(∞) = {\tilde{I}}_1 = {\tilde{A}}_1 CDel node.pngCDel infin.pngCDel node.png \left [\begin{smallmatrix}2&-2\\-2&2\end{smallmatrix}\right ] 0

Finite Coxeter groups

See also polytope families for a table of end-node uniform polytopes associated with these groups.
  • Three different symbols are given for the same groups – as a letter/number, as a bracketed set of numbers, and as the Coxeter diagram.
  • The bifurcated Dn groups is half or alternated version of the regular Cn groups.
  • The bifurcated Dn and En groups are also labeled by a superscript form [3a,b,c] where a,b,c are the numbers of segments in each of the three branches.
Connected finite Dynkin graphs up to (ranks 1 to 9)
Rank Simple Lie groups Exceptional Lie groups  
A1 + BC2 + D2 + E3 − 8 F4 / G2 H2 − 4 I2(p)
1 A1=[]

CDel node.png

       
2 A2=[3]

CDel node.pngCDel 3.pngCDel node.png

BC2=[4]

CDel node.pngCDel 4.pngCDel node.png

D2=A1xA1

CDel nodes.png

  G2=[6]

CDel node.pngCDel 6.pngCDel node.png

H2=[6]

CDel node.pngCDel 5.pngCDel node.png

I2[p]

CDel node.pngCDel p.pngCDel node.png

3 A3=[32]

CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

BC3=[3,4]

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png

D3=A3

CDel nodes.pngCDel split2.pngCDel node.png

E3=A2xA1

CDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodeb.png

  H3 

CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png

4 A4=[33]

CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

BC4=[32,4]

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

D4=[31,1,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

E4=A4

CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png

F4

CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png

H4 

CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

5 A5=[34]

CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

BC5=[33,4]

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

D5=[32,1,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

E5=D5

CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png

 
6 A6=[35]

CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

BC6=[34,4]

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

D6=[33,1,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

E6=[32,2,1]

CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

7 A7=[36]

CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

BC7=[35,4]

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

D7=[34,1,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

E7=[33,2,1]

CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

8 A8=[37]

CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

BC8=[36,4]

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

D8=[35,1,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

E8=[34,2,1]

CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

9 A9=[38]

CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

BC9=[37,4]

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

D9=[36,1,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

 
10+ .. .. .. ..

Affine Coxeter groups

Families of convex uniform Euclidean tessellations are defined by the affine Coxeter groups. These groups are identical to the finite groups with the inclusion of one added node. In letter names they are given the same letter with a "~" above the letter. The index refers to the finite group, so the rank is the index plus 1. (Ernst Witt symbols for the affine groups are given as also)

  1. {\tilde{A}}_{n-1}: diagrams of this type are cycles. (Also Pn)
  2. {\tilde{C}}_{n-1} is associated with the hypercube regular tessellation family {4,3,....,4} family. (Also Rn)
  3. {\tilde{B}}_{n-1} related to C by one removed mirror. (Also Sn)
  4. {\tilde{D}}_{n-1} related to C by two removed mirror. (Also Qn)
  5. {\tilde{E}}_{6}, {\tilde{E}}_{7}, {\tilde{E}}_{8}. (Also T7, T8, T9)
  6. {\tilde{F}}_{4} forms the {3,4,3,3} regular tessellation. (Also U5)
  7. {\tilde{G}}_{2} forms 30-60-90 triangle fundamental domains. (Also V3)
  8. {\tilde{I}}_{1} is two parallel mirrors. ( = {\tilde{A}}_{1} = {\tilde{C}}_{1}) (Also W2)
Affine Dynkin graphs up to (2 to 10 nodes)
Rank {\tilde{A}}_{1+} (P2+) {\tilde{B}}_{3+} (S4+) {\tilde{C}}_{1+} (R2+) {\tilde{D}}_{4+} (Q5+) {\tilde{E}}_{n} (Tn+1) / {\tilde{F}}_{4} (U5) / {\tilde{G}}_{2} (V3)
2 {\tilde{A}}_{1}=[∞]

CDel node.pngCDel infin.pngCDel node.png

  {\tilde{C}}_{1}=[∞]

CDel node.pngCDel infin.pngCDel node.png

   
3 {\tilde{A}}_{2}=[3[3]]

CDel branch.pngCDel split2.pngCDel node.png

{\tilde{C}}_{2}=[4,4]

CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png

{\tilde{G}}_{2}=[6,3]

CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png

4 {\tilde{A}}_{3}=[3[4]]

CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png

{\tilde{B}}_{3}=[4,31,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png

{\tilde{C}}_{3}=[4,3,4]

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

 
5 {\tilde{A}}_{4}=[3[5]]

CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

{\tilde{B}}_{4}=[4,3,31,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

{\tilde{C}}_{4}=[4,32,4]

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

{\tilde{D}}_{4}=[31,1,1,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png

{\tilde{F}}_{4}=[3,4,3,3]

CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

6 {\tilde{A}}_{5}=[3[6]]

CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

{\tilde{B}}_{5}=[4,32,31,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

{\tilde{C}}_{5}=[4,33,4]

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

{\tilde{D}}_{5}=[31,1,3,31,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

 
7 {\tilde{A}}_{6}=[3[7]]

CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

{\tilde{B}}_{6}=[4,33,31,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

{\tilde{C}}_{6}=[4,34,4]

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

{\tilde{D}}_{6}=[31,1,32,31,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

{\tilde{E}}_{6}=[32,2,2]

CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

8 {\tilde{A}}_{7}=[3[8]]

CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

{\tilde{B}}_{7}=[4,34,31,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

{\tilde{C}}_{7}=[4,35,4]

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

{\tilde{D}}_{7}=[31,1,33,31,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

{\tilde{E}}_{7}=[33,3,1]

CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

9 {\tilde{A}}_{8}=[3[9]]

CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

{\tilde{B}}_{8}=[4,35,31,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

{\tilde{C}}_{8}=[4,36,4]

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

{\tilde{D}}_{8}=[31,1,34,31,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

{\tilde{E}}_{8}=[35,2,1]

CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

10 {\tilde{A}}_{9}=[3[10]]

CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

{\tilde{B}}_{9}=[4,36,31,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

{\tilde{C}}_{9}=[4,37,4]

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

{\tilde{D}}_{9}=[31,1,35,31,1]

CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

11 ... ... ... ...

Hyperbolic Coxeter groups

There are many infinite hyperbolic Coxeter groups. Hyperbolic groups are categorized as compact or not, with compact groups having bounded fundamental domains. Compact hyperbolic groups exist of rank 3 to 5, and noncompact groups exist up to rank 10.

Compact

Rank 3

There are infinitely many compact hyperbolic Coxeter groups of rank 3, including linear and triangle graphs. See notably the hyperbolic triangle groups.[2]

Compact hyperbolic Coxeter groups
Linear Cyclic
∞: [p,q], 2(p+q)<pq

CDel node.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 9.pngCDel node.pngCDel 3.pngCDel node.png
...
CDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png
CDel node.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png
...
CDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png
CDel node.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.png
...

∞ [(p,q,r)], p+q+r>9

CDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.png

CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.png
CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.pngCDel 4.png
CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.png

CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.pngCDel 4.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.pngCDel 4.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.pngCDel 5.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.png

CDel 3.pngCDel node.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png
...

Ranks 4 to 5

The fundamental domain of either of the two bifurcating groups, [5,31,1] and [5,3,31,1], is double that of a corresponding linear group, [5,3,4] and [5,3,3,4] respectively.

Compact hyperbolic Coxeter groups
Dimension
Hd
Rank Total count Linear Bifurcating Cyclic
H3 4 9
3:

{\bar{BH}}_3 = [4,3,5]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
{\bar{K}}_3 = [5,3,5]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
{\bar{J}}_3 = [3,5,3]: CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png

{\bar{DH}}_3 = [5,31,1]: CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes.png

{\widehat{AB}}_3 = [(3,3,3,4)]: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.png 
{\widehat{AH}}_3 = [(3,3,3,5)]: CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.png 
{\widehat{BB}}_3 = [(3,4,3,4)]: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png
{\widehat{BH}}_3 = [(3,4,3,5)]: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
{\widehat{HH}}_3 = [(3,5,3,5)]: CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png

H4 5 5
3:

{\bar{H}}_4 = [3,3,3,5]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
{\bar{BH}}_4 = [4,3,3,5]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
{\bar{K}}_4 = [5,3,3,5]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png

{\bar{DH}}_4 = [5,3,31,1]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

{\widehat{AF}}_4 = [(3,3,3,3,4)]: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

Noncompact

The highest noncompact hyperbolic Coxeter group is rank 10.

Rank 3

Noncompact Coxeter groups of rank 3 include linear and triangle graphs with one or more infinite order branches: (p and q = 3,4,5...)

Linear graphs Cyclic graphs
  • [p,∞] CDel node.pngCDel p.pngCDel node.pngCDel infin.pngCDel node.png
  • [∞,∞] CDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.png
  • [(p,q,∞)] CDel 3.pngCDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel infin.pngCDel 3.png
  • [(p,∞,∞)] CDel 3.pngCDel node.pngCDel p.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel 3.png
  • [(∞,∞,∞)] CDel 3.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel 3.png

Ranks 4 to 10

There are a total of 58 noncompact hyperbolic Coxeter groups from rank 4 through 10. All 58 are grouped below in five categories. Letter symbols are given by Johnson as Extended Witt symbols, using PQRSTWUV from the affine Witt symbols, and adding LMNOXYZ. These hyperbolic groups are given an overline, or a hat, for purely cyclic graphs. The bracket notation from Coxeter is a linearized representation of the Coxeter group.

Hyperbolic noncompact groups
Rank Total
count
Groups
4 23

{\widehat{BR}}_3 = [(3,3,4,4)]: CDel label4.pngCDel branch.pngCDel 4-3.pngCDel branch.pngCDel 2.png
{\widehat{CR}}_3 = [(3,4,4,4)]: CDel label4.pngCDel branch.pngCDel 4-3.pngCDel branch.pngCDel label4.png
{\widehat{RR}}_3 = [(4,4,4,4)]: CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.pngCDel label4.png
{\widehat{AV}}_3 = [(3,3,3,6)]: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel 2.png
{\widehat{BV}}_3 = [(3,4,3,6)]: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png
{\widehat{HV}}_3 = [(3,5,3,6)]: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
{\widehat{VV}}_3 = [(3,6,3,6)]: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png

{\bar{P}}_3 = [3,3[3]]: CDel branch.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
{\bar{BP}}_3 = [4,3[3]]: CDel branch.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png
{\bar{HP}}_3 = [5,3[3]]: CDel branch.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
{\bar{VP}}_3 = [6,3[3]]: CDel branch.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png
{\bar{DV}}_3 = [6,31,1]: CDel nodes.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png
{\bar{O}}_3 = [6,41,1]: CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png
{\bar{M}}_3 = [4,41,1]: CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.png

{\bar{R}}_3 = [3,4,4]: CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
{\bar{N}}_3 = [4,4,4]: CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
{\bar{V}}_3 = [3,3,6]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
{\bar{BV}}_3 = [4,3,6]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
{\bar{HV}}_3 = [5,3,6]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
{\bar{Y}}_3 = [3,6,3]: CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
{\bar{Z}}_3 = [6,3,6]: CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png

{\bar{DP}}_3 = [3[ ]x[ ]]: CDel node.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png
{\bar{PP}}_3 = [3[3,3]]: CDel tet.png

5 9 {\bar{P}}_4 = [3,3[4]]: CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

{\bar{BP}}_4 = [4,3[4]]: CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png
{\widehat{FR}}_4 = [(3,3,4,3,4)]: CDel branch.pngCDel 4-4.pngCDel nodes.pngCDel split2.pngCDel node.png
{\bar{DP}}_4 = [3[3]x[ ]]: CDel node.pngCDel split1.pngCDel branchbranch.pngCDel split2.pngCDel node.png

{\bar{N}}_4 = [4,/3\,3,4]: CDel nodes.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
{\bar{O}}_4 = [3,4,31,1]: CDel nodes.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
{\bar{S}}_4 = [4,32,1]: CDel nodes.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

{\bar{R}}_4 = [3,4,3,4]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png

{\bar{M}}_4 = [4,31,1,1]: CDel nodes.pngCDel split2-43.pngCDel node.pngCDel split1.pngCDel nodes.png
6 12

{\bar{P}}_5 = [3,3[5]]: CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

{\widehat{AU}}_5 = [(3,3,3,3,3,4)]: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png

{\widehat{AR}}_5 = [(3,3,4,3,3,4)]: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel label4.png

{\bar{S}}_5 = [4,3,32,1]: CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
{\bar{O}}_5 = [3,4,31,1]: CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
{\bar{N}}_5 = [4,3,/3\,3,4]: CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png

{\bar{U}}_5 = [3,3,3,4,3]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
{\bar{X}}_5 = [3,3,4,3,3]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{\bar{R}}_5 = [3,4,3,3,4]: CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

{\bar{Q}}_5 = [32,1,1,1]: CDel nodea.pngCDel 3a.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png

{\bar{M}}_5 = [4,3,31,1,1]: CDel nodea.pngCDel 4a.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png
{\bar{L}}_5 = [31,1,1,1,1]: CDel star5.png

7 3

{\bar{P}}_6 = [3,3[6]]:
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

{\bar{Q}}_6 = [31,1,3,32,1]:
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
{\bar{S}}_6 = [4,3,3,32,1]:
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
8 4 {\bar{P}}_7 = [3,3[7]]:
CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
{\bar{Q}}_7 = [31,1,32,32,1]:
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
{\bar{S}}_7 = [4,33,32,1]:
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
{\bar{T}}_7 = [33,2,2]:
CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
9 4 {\bar{P}}_8 = [3,3[8]]:
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
{\bar{Q}}_8 = [31,1,33,32,1]:
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
{\bar{S}}_8 = [4,34,32,1]:
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
{\bar{T}}_8 = [34,3,1]:
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
10 3 {\bar{Q}}_9 = [31,1,34,32,1]:
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
{\bar{S}}_9 = [4,35,32,1]:
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
{\bar{T}}_9 = [36,2,1]:
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

Beyond hyperbolic groups

Coxeter groups can be defined as graphs beyond the hyperbolic forms. These can be considered to be related to a Lorentzian geometry, named after Hendrik Lorentz in the field of special and general relativity space-time, containing one (or more) time-like dimensional components whose self dot products are negative.[3]

One usage includes the very-extended definitions which adds a third node to the over-extended simple groups. See family En (Lie algebra) with E11 as a very-extended Coxeter-dynkin diagram.

Geometric folding

Coxeter group foldings
Geometric folding Coxeter graphs.png
Finite
Geometric folding Coxeter graphs affine.png
Affine
Geometric folding Coxeter graphs hyperbolic.png
Hyperbolic

A (simply-laced) Coxeter-Dynkin diagram (finite or affine) that has a symmetry (satisfying one condition, below) can be quotiented by the symmetry, yielding a new, generally multiply laced diagram, with the process called folding.[4]

The one condition on the automorphism for folding to be possible is that distinct nodes of the graph in the same orbit (under the automorphism) must not be connected by an edge; at the level of root systems, roots in the same orbit must be orthogonal.[5] At the level of diagrams, this is necessary as otherwise the quotient diagram will have a loop, due to identifying two nodes but having an edge between them, and loops are not allowed in Coxeter-Dynkin diagrams.

The nodes and edges of the quotient ("folded") diagram are the orbits of nodes and edges of the original diagram; the edges are single unless two incident edges map to the same edge (notably at nodes of valence greater than 2) – a "branch point" of the map, in which case the weight is the number of incident edges, and the arrow points towards the node at which they are incident – "the branch point maps to the non-homogeneous point".

For example, in D4 folding to G2, the edge in G2 points from the class of the 3 outer nodes (valence 1), to the class of the central node (valence 3).

Geometrically this corresponds to orthogonal projections of uniform polytopes. Notably, any finite simply-laced Coxeter-Dynkin diagram can be folded to I2(h), where h is the Coxeter number, which corresponds geometrically to a projection to the Coxeter plane.

See also

Notes

  1. ^ Hall, Brian C. (2003), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Springer, ISBN 0-387-40122-9 .
  2. ^ The Geometry and Topology of Coxeter Groups, Michael W. Davis, 2008 p. 105 Table 6.2. Hyperbolic diagrams
  3. ^ Norman Johnson, Geometries and Transformations, Chapter 13: Hyperbolic Coxeter groups, 13.6 Lorentzian lattices
  4. ^ Generalized Dynkin diagrams and root systems and their folding by Jean-Bernard Zuber, pp. 28–30
  5. ^ Folding by Automorphisms, John Stembridge, 4pp., 79K, 20 August 2008, Other Articles by John Stembridge

References

  • James E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge studies in advanced mathematics, 29 (1990)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1], Googlebooks [2]
    • (Paper 17) Coxeter, The Evolution of Coxeter-Dynkin diagrams, [Nieuw Archief voor Wiskunde 9 (1991) 233-248]
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 978-0-486-40919-1 (Chapter 3: Wythoff's Construction for Uniform Polytopes)
  • Coxeter, Regular Polytopes (1963), Macmillian Company
    • Regular Polytopes, Third edition, (1973), Dover edition, ISBN 0-486-61480-8 (Chapter 5: The Kaleidoscope, and Section 11.3 Representation by graphs)
  • Norman Johnson, Geometries and Transformations, Chapters 11,12,13, preprint 2011

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Coxeter-Dynkin diagram — In geometry, a Coxeter Dynkin diagram is a graph with labelled edges. It represents the spatial relations between a collection of mirrors (or reflecting hyperplanes), and describes a kaleidoscopic construction.The diagram represents a Coxeter… …   Wikipedia

  • Dynkin diagram — See also: Coxeter–Dynkin diagram Finite Dynkin diagrams Affine (extended) Dynkin diagrams …   Wikipedia

  • Diagramme de Coxeter-Dynkin — Les groupes de Coxeter dans le plan avec les diagrammes équivalents. Les miroirs du domaine sont nommés par les arêtes m1, m2, etc. Les sommets sont colorés par leur ordre de réflexion. Le groupe prismatique [W2xW2] est montré comme un doublement …   Wikipédia en Français

  • Coxeter group — In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry …   Wikipedia

  • Coxeter notation — In geometry, Coxeter notation is a system of classifying symmetry groups, describing the angles between with fundamental reflections of a Coxeter group. It uses a bracketed notation, with modifiers to indicate certain subgroups. The notation is… …   Wikipedia

  • Eugene Dynkin — Eugene Borisovich Dynkin ( ru. Евгений Борисович Дынкин; born May 11, 1924) is a Russian mathematician. He has made contributions to the fields of probability and algebra, especially semisimple Lie groups, Lie algebras, and Markov processes. The… …   Wikipedia

  • Harold Scott MacDonald Coxeter — H. S. M. Donald Coxeter Born February 9, 1907(1907 02 09) London, England …   Wikipedia

  • Diagramme de Dynkin — Système de racines En mathématiques, un système de racines est une configuration de vecteurs dans un espace euclidien qui vérifie certaines conditions géométriques. Cette notion est très importante dans la théorie des groupes de Lie. Comme les… …   Wikipédia en Français

  • Pentellated 6-simplex — 6 simplex …   Wikipedia

  • Convex uniform honeycombs in hyperbolic space — The {5,3,4} honeycomb in 3D hyperbolic space, viewed in perspective In geometry, a convex uniform honeycomb is a tessellation of convex uniform polyhedron cells. In 3 dimensional hyperbolic space there are nine Coxeter group f …   Wikipedia