Cotes's spiral


Cotes's spiral

In physics and in the mathematics of plane curves, Cotes's spiral (also written Cotes' spiral and Cotes spiral) is a spiral that is typically written in one of three forms


\frac{1}{r} = A \cos\left( k\theta + \varepsilon \right)

\frac{1}{r} = A \cosh\left( k\theta + \varepsilon \right)

\frac{1}{r} = A \theta + \varepsilon

where r and θ are the radius and azimuthal angle in a polar coordinate system, respectively, and A, k and ε are arbitrary real number constants. These spirals are named after Roger Cotes. The first form corresponds to an epispiral, and the second to one of Poinsot's spirals; the third form corresponds to a hyperbolic spiral, also known as a reciprocal spiral, which is sometimes not counted as a Cotes's spiral.[1]

The significance of Cotes's spirals for physics are in the field of classical mechanics. These spirals are the solutions for the motion of a particle moving under a inverse-cube central force, e.g.,


F(r) = \frac{\mu}{r^3}

where μ is any real number constant. A central force is one that depends only on the distance r between the moving particle and a point fixed in space, the center. In this case, the constant k of the spiral can be determined from μ and the areal velocity of the particle h by the formula


k^{2} = 1 - \frac{\mu}{h^2}

when μ < h 2 (cosine form of the spiral) and


k^{2} = \frac{\mu}{h^2} - 1

when μ > h 2 (hyperbolic cosine form of the spiral). When μ = h 2 exactly, the particle follows the third form of the spiral


\frac{1}{r} = A \theta + \varepsilon.

Contents

See also

References

  1. ^ Nathaniel Grossman (1996). The sheer joy of celestial mechanics. Springer. p. 34. ISBN 9780817638320. http://books.google.com/books?id=mms6MXH9CuoC&pg=PA34. 

Bibliography

  • Whittaker ET (1937). A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, with an Introduction to the Problem of Three Bodies (4th ed. ed.). New York: Dover Publications. pp. pp. 80–83. ISBN 978-0-521-35883-5. 
  • Danby JM (1988). "The Case ƒ(r) = μ/r 3 — Cotes' Spiral (§4.7)". Fundamentals of Celestial Mechanics (2nd ed., rev. ed. ed.). Richmond, VA: Willmann-Bell. pp. pp. 69–71. ISBN 978-0943396200. 
  • Symon KR (1971). Mechanics (3rd ed. ed.). Reading, MA: Addison-Wesley. pp. p. 154. ISBN 978-0201073928. 

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Cotes' spiral — In physics and in the mathematics of plane curves, Cotes spiral is a spiral that is typically written in one of three forms:frac{1}{r} = A cosleft( k heta + varepsilon ight):frac{1}{r} = A coshleft( k heta + varepsilon ight) :frac{1}{r} = A heta… …   Wikipedia

  • Roger Cotes — Infobox Scientist name = Roger Cotes box width = 300px |250px image width = 250px caption = This bust was commissioned by Robert Smith and sculpted posthumously by P. Scheemakers in 1758. birth date = birth date|1682|07|10 birth place = Burbage,… …   Wikipedia

  • Philosophiæ Naturalis Principia Mathematica —   Title page of Principia , first edition (1687) Original title …   Wikipedia

  • Newton's theorem of revolving orbits — Figure 1: An attractive force F(r) causes the blue planet to move on the cyan circle. The green planet moves three times faster and thus requires a stronger centripetal force, which is supplied by adding an attractive inverse cube force. The …   Wikipedia

  • D'espairsRay — Pays d’origine  Japon Genre musical Metal industriel Nu metal Rock Alternatif Visual Kei Années d activité …   Wikipédia en Français

  • Joel Moore — en 2009 Données clés Nom de naissance Joel David Moore Naissance …   Wikipédia en Français

  • Mikoyan-Gourevitch MiG-105 — Avion spatial Spiral au Musée central des forces aériennes de la Fédération de Russie de Monino. Le Mikoyan Gourevitch MiG 105 Spiral est un prototype d avion spatial soviétique de type corps portant développé dans les années 1960. Il est… …   Wikipédia en Français

  • List of curves — This is a list of curves, by Wikipedia page. See also list of curve topics, list of surfaces, Riemann surface. Algebraic curves*Cubic plane curve *Quartic plane curve *Quintic plane curve *Sextic plane curveRational curves*Ampersand curve… …   Wikipedia

  • Nine Inch Nails — Surnom NIИ Pays d’origine …   Wikipédia en Français

  • Dorothy McGuire — Pour les articles homonymes, voir Dorothy et McGuire. Dorothy McGuire …   Wikipédia en Français