Evolution of biological complexity

Evolution of biological complexity
Part of the Biology series on
Evolution
Mechanisms and processes

Adaptation
Genetic drift
Gene flow
Mutation
Selection
Speciation

Research and history

Evidence
History
Modern synthesis
Social effect / Objections

Evolutionary biology fields

Cladistics
Ecological genetics
Evolutionary development
Human evolution
Molecular evolution
Phylogenetics
Population genetics

Evolution Portal ·v · evolution. Evolution has produced some remarkably complex organisms - although the actual level of complexity is very hard to define or measure accurately in biology, with properties such as gene content, the number of cell types or morphology all being used to assess an organism's complexity.[1][2] This observation that complex organisms can be produced from simpler ones has led to the common misperception of evolution being progressive and having a direction that leads towards what are viewed as "higher organisms".[3]

Nowadays, this idea of "progression" in evolution is regarded as misleading, with natural selection having no intrinsic direction and organisms selected for either increased or decreased complexity in response to local environmental conditions.[4] Although there has been an increase in the maximum level of complexity over the history of life, there has always been a large majority of small and simple organisms and the most common level of complexity (the mode) appears to have remained relatively constant.

Contents

Selection for simplicity and complexity

Organisms that reproduce more quickly and plentifully than their competitors have an evolutionary advantage. Consequently, organisms can evolve to become simpler and thus multiply faster and produce more offspring, as they require fewer resources to reproduce. A good example are parasites such as malaria and mycoplasma; these organisms often dispense with traits that are made unnecessary through parasitism on a host.[5]

A lineage can also dispense with complexity when a particular complex trait merely provides no selective advantage in a particular environment. Loss of this trait need not necessarily confer a selective advantage, but may be lost due to the accumulation of mutations if its loss does not confer an immediate selective disadvantage.[6] For example, a parasitic organism may dispense with the synthetic pathway of a metabolite where it can readily scavenge that metabolite from its host. Discarding this synthesis may not necessarily allow the parasite to conserve significant energy or resources and grow faster, but the loss may be fixed in the population through mutation accumulation if no disadvantage is incurred by loss of that pathway. Mutations causing loss of a complex trait occur more often than mutations causing gain of a complex trait.

With selection, evolution can also produce more complex organisms. Complexity often arises in the co-evolution of hosts and pathogens,[7] with each side developing ever more sophisticated adaptations, such as the immune system and the many techniques pathogens have developed to evade it. For example, the parasite Trypanosoma brucei, which causes sleeping sickness, has evolved so many copies of its major surface antigen that about 10% of its genome is devoted to different versions of this one gene. This tremendous complexity allows the parasite to constantly change its surface and thus evade the immune system through antigenic variation.[8]

More generally, the growth of complexity may be driven by the co-evolution between an organism and the ecosystem of predators, prey and parasites to which it tries to stay adapted: as any of these become more complex in order to cope better with the diversity of threats offered by the ecosystem formed by the others, the others too will have to adapt by becoming more complex, thus triggering an on-going evolutionary arms race[7] towards more complexity.[9] This trend may be reinforced by the fact that ecosystems themselves tend to become more complex over time, as species diversity increases, together with the linkages or dependencies between species.

Types of trends in complexity

Passive versus active trends in the evolution of complexity. Organisms at the beginning of the processes are colored red. Numbers of organisms are shown by the height of the bars, with the graphs moving up in a time series.

If evolution possessed an active trend toward complexity, then we would expect to see an increase over time in the most common value (the mode) of complexity among organisms, as shown to the right.[10] Indeed, some computer models have suggested that the generation of complex organisms is an inescapable feature of evolution.[11][12] This is sometimes referred to as evolutionary self-organization. Self-organization is the spontaneous internal organization of a system. This process is accompanied by an increase in systemic complexity, resulting in an emergent property that is distinctly different from any of the constituent parts.

However, the idea of increasing production of complexity in evolution can also be explained through a passive process.[10] As shown on the leftt, this involves an increase in variance but the mode does not change. The trend towards higher complexity over time exists, but also involves increasingly smaller portions of biological life.

In this hypothesis, any appearance of evolution acting with an intrinsic direction towards increasingly complex organisms is a result of people concentrating on the small number of large, complex organisms that inhabit the right-hand tail of the complexity distribution and ignoring simpler and much more common organisms. This passive model predicts that the majority of species are microscopic prokaryotes, which is supported by estimates of 106 to 109 extant prokaryotes[13] compared to diversity estimates of 106 to 3·106 for eukaryotes.[14][15] Consequently, in this view, microscopic life dominates Earth, and large organisms only appear more diverse due to sampling bias.

History

In the 19th century, some scientists such as Jean-Baptiste Lamarck and Ray Lankester believed that all Nature had an innate striving to become more complex with evolution. This belief may reflect then-current ideas of Hegel and Herbert Spencer that all creation was gradually evolving to a higher, more perfect state.

According to this view, the evolution of parasites from an independent organism to parasite was seen as "devolution" or "degeneration", and contrary to Nature. This view has sometimes been used metaphorically by social theorists and propagandists to decry a class of people as "degenerate parasites". Today, "devolution" is regarded as nonsense; rather, lineages will become simpler or more complicated according to whatever forms have a selective advantage.[16]

See also

References

  1. ^ Adami C (2002). "What is complexity?". Bioessays 24 (12): 1085–94. doi:10.1002/bies.10192. PMID 12447974. 
  2. ^ Waldrop M. et al. (2008). "Language: Disputed definitions". Nature 455 (7216): 1023–1028. doi:10.1038/4551023a. PMID 18948925. 
  3. ^ McShea D (1991). "Complexity and evolution: What everybody knows". Biology and Philosophy 6 (3): 303–324. doi:10.1007/BF00132234. 
  4. ^ Ayala FJ (2007). "Darwin's greatest discovery: design without designer". Proc. Natl. Acad. Sci. U.S.A. 104 Suppl 1: 8567–73. doi:10.1073/pnas.0701072104. PMC 1876431. PMID 17494753. http://www.pnas.org/cgi/content/full/104/suppl_1/8567. 
  5. ^ Sirand-Pugnet P, Lartigue C, Marenda M, et al. (2007). "Being Pathogenic, Plastic, and Sexual while Living with a Nearly Minimal Bacterial Genome". PLoS Genet. 3 (5): e75. doi:10.1371/journal.pgen.0030075. PMC 1868952. PMID 17511520. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1868952. 
  6. ^ Maughan H, Masel J, Birky WC, Nicholson WL (2007). "The roles of mutation accumulation and selection in loss of sporulation in experimental populations of Bacillus subtilis". Genetics 177: 937–948. doi:10.1534/genetics.107.075663. 
  7. ^ a b R. Dawkins and J. R. Krebs (1979). "Arms Races between and within Species". Proc. R. Soc. Lond.B 205 (1161): 489–511. doi:10.1098/rspb.1979.0081. PMID 42057. 
  8. ^ Pays E (2005). "Regulation of antigen gene expression in Trypanosoma brucei". Trends Parasitol. 21 (11): 517–20. doi:10.1016/j.pt.2005.08.016. PMID 16126458. 
  9. ^ Heylighen, F. (1999a) "The Growth of Structural and Functional Complexity during Evolution", in F. Heylighen, J. Bollen & A. Riegler (eds.) The Evolution of Complexity Kluwer Academic, Dordrecht, 17-44.
  10. ^ a b Carroll SB (2001). "Chance and necessity: the evolution of morphological complexity and diversity". Nature 409 (6823): 1102–9. doi:10.1038/35059227. PMID 11234024. 
  11. ^ Furusawa C, Kaneko K (2000). "Origin of complexity in multicellular organisms". Phys. Rev. Lett. 84 (26 Pt 1): 6130–3. Bibcode 2000PhRvL..84.6130F. doi:10.1103/PhysRevLett.84.6130. PMID 10991141. 
  12. ^ Adami C, Ofria C, Collier TC (2000). "Evolution of biological complexity". Proc. Natl. Acad. Sci. U.S.A. 97 (9): 4463–8. doi:10.1073/pnas.97.9.4463. PMC 18257. PMID 10781045. http://www.pnas.org/cgi/content/full/97/9/4463. 
  13. ^ Oren A (2004). "Prokaryote diversity and taxonomy: current status and future challenges". Philos. Trans. R. Soc. Lond., B, Biol. Sci. 359 (1444): 623–38. doi:10.1098/rstb.2003.1458. PMC 1693353. PMID 15253349. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1693353. 
  14. ^ May, R. M.; Beverton, R. J. H. (1990). "How Many Species?". R. M. May, Philos. Trans. R. Soc. London Ser. B 330, 293 (1990) 330 (1257): 293. doi:10.1098/rstb.1990.0200. http://rstb.royalsocietypublishing.org/content/330/1257/293.abstract?ijkey=01b04eee73eda3609fb8f928b58db87298a825a0&keytype2=tf_ipsecsha. 
  15. ^ Schloss P, Handelsman J (2004). "Status of the microbial census". Microbiol Mol Biol Rev 68 (4): 686–91. doi:10.1128/MMBR.68.4.686-691.2004. PMC 539005. PMID 15590780. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=539005. 
  16. ^ Scientific American; Biology: Is the human race evolving or devolving? retrieved 2007-06-11

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Evolution of complexity — The evolution of complexity is an important outcome of the process of evolution. Evolution has produced some remarkably complex organisms although this feature is hard to measure accurately in biology, with properties such as gene content, the… …   Wikipedia

  • Evolution (term) — Evolution is a term with many meanings. For instance, Merriam Webster lists biological evolution as one meaning out of a total of six.Evolution is not exclusively a term of biology. There are also evolutionary economics, evolution of languages,… …   Wikipedia

  • Evolution — This article is about evolution in biology. For other uses, see Evolution (disambiguation). For a generally accessible and less technical introduction to the topic, see Introduction to evolution. Part of a series on …   Wikipedia

  • evolution — evolutional, adj. evolutionally, adv. /ev euh looh sheuhn/ or, esp. Brit., /ee veuh /, n. 1. any process of formation or growth; development: the evolution of a language; the evolution of the airplane. 2. a product of such development; something… …   Universalium

  • Evolution — ist die Veränderung der vererbbaren Merkmale einer Population von Lebewesen von Generation zu Generation. Diese Merkmale sind in Form von Genen kodiert, die bei der Fortpflanzung kopiert und an den Nachwuchs weitergegeben werden. Durch Mutationen …   Deutsch Wikipedia

  • Complexity — For other uses, see Complexity (disambiguation). In general usage, complexity tends to be used to characterize something with many parts in intricate arrangement. The study of these complex linkages is the main goal of complex systems theory. In… …   Wikipedia

  • biological development — Introduction       the progressive changes in size, shape, and function during the life of an organism by which its genetic potentials (genotype) are translated into functioning mature systems (phenotype). Most modern philosophical outlooks would …   Universalium

  • Evolution of sexual reproduction — The evolution of sexual reproduction is currently described by several competing scientific hypotheses. All sexually reproducing organisms derive from a common ancestor which was a single celled eukaryotic species[1]. Many protists reproduce… …   Wikipedia

  • Evolution and the Roman Catholic Church — The position of the Catholic Church on the theory of evolution has moved over the last two centuries from a large period of no official mention, to a statement of neutrality in the 1950s, to a more explicit acceptance in recent years. Today, the… …   Wikipedia

  • biological — adj. Biological is used with these nouns: ↑attack, ↑characteristic, ↑clock, ↑complexity, ↑diversity, ↑entity, ↑evolution, ↑father, ↑heritage, ↑laboratory, ↑make up, ↑ …   Collocations dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”