Cluster algebra

Cluster algebra

Cluster algebras are a class of commutative rings introduced by Fomin and Zelevinsky (2002, 2003, 2007). A cluster algebra of rank n is an integral domain A, together with some subsets of size n called clusters whose union generates the algebra A and which satisfy various conditions.

Contents

Definitions

Suppose that F is an integral domain, such as the field Q(x1,...,xn) of rational functions in n variables over the rational numbers Q.

A cluster of rank n consists of a set of n elements {x, y, ...} of F, usually assumed to be an algebraically independent set of generators of a field extension F.

A seed consists of a cluster {x,y,...} of F, together with an exchange matrix B with integer entries bx,y indexed by pairs of elements x, y of the cluster. The matrix is sometimes assumed to be skew symmetric, so that bx,y = –by,x. More generally the matrix might be skew symmetrizable, meaning there are positive integers dx associated with the elements of the cluster such that dxbx,y = –dyby,x. It is common to picture a seed as a quiver with vertices the generating set, by drawing bx,y arrows from x to y if this number is positive. When bx,y is skew symmetrizable the quiver has no loops or 2-cycles.

A mutation of a seed, depending on a choice of vertex y of the cluster, is a new seed given by a generalization of tilting as follows. Exchange the values of bx,y and by,x for all x in the cluster. If bx,y > 0 arrows and by,z > 0 then replace bx,z by bx,yby,z + bx,z. Finally replace y by a new generator w, where

wy=\prod_{t,b_{t,y}>0}t^{b_{t,y}} + \prod_{t,b_{t,y}<0}t^{-b_{t,y}}

where the products run through the elements t in the cluster of the seed such that bt,y is positive or negative respectively. The inverse of a mutation is also a mutation: in other words, if A is a mutation of B, then B is a mutation of A.

A cluster algebra is constructed from a seed as follows. If we repeatedly mutate the seed in all possible ways, we get a finite or infinite graph of seeds, where two seeds are joined if one can be obtained by mutating the other. The underlying algebra of the cluster algebra is the algebra generated by all the clusters of all the seeds in this graph. The cluster algebra also comes with the extra structure of the seeds of this graph.

A cluster algebra is said to be of finite type if it has only a finite number of seeds. Fomin & Zelevinsky (2003) showed that the cluster algebras of finite type can be classified in terms of the Dynkin diagrams of finite dimensional simple Lie algebras.

Examples

Cluster algebras of rank 1

If {x} is the cluster of a seed of rank 1, then the only mutation takes this to {2x–1}. So a cluster algebra of rank 1 is just a ring k[x,x–1] of Laurent polynomials, and it has just two clusters, {x} and {2x–1}. In particular it is of finite type and is associated with the Dynkin diagram A1.

Cluster algebras of rank 2

Suppose that we start with the cluster {x1, x2} and take the exchange matrix with b12=–b21=1. Then mutation gives a sequence of variables x1, x2, x3, x4,... such that the clusters are given by adjacent pairs {xn,xn+1}. The variables are related by

\displaystyle x_{n-1}x_{n+1}=1+x_n

so are given by the sequence

 x_1, x_2, x_3=\frac{1+x_2}{x_1}, x_4=\frac{1+x_3}{x_2}=\frac{1+x_1+x_2}{x_1x_2},  x_5=\frac{1+x_4}{x_3}=\frac{1+x_1}{x_2},
x_6=\frac{1+x_5}{x_4}=x_1,x_7=\frac{1+x_6}{x_5}=x_2,\ldots

which repeats with period 5. So this cluster algebra has exactly 5 clusters, and in particular is of finite type. It is associated with the Dynkin diagram A2.

There are similar examples with b12 = 1, –b21 = 2 or 3, where the analogous sequence of cluster variables repeats with period 6 or 8. These are also of finite type, and are associated with the Dynkin diagrams B2 and G2. However if |b12b21| ≥ 4 then the sequence of cluster variables is not periodic and the cluster algebra is of infinite type.

Cluster algebras of rank 3

Suppose we start with the quiver x1x2x3. Then the 14 clusters are:

\left\{ x_1,x_2,x_3 \right\},
\left\{\frac{1+x_2}{x_1},x_2,x_3 \right\},
\left\{x_1, \frac{x_1 + x_3}{x_2},x_3 \right\},
\left\{x_1,x_2,\frac{1+x_2}{x_3}\right\},
\left\{\frac{1+x_2}{x_1}, \frac{x_1 +(1+x_2)x_3}{x_1 x_2},x_3 \right\},
\left\{\frac{1+x_2}{x_1},x_2,\frac{1+x_2}{x_3} \right\},
\left\{\frac{x_1+(1+x_2)x_3}{x_1x_2},\frac{x_1 + x_3}{x_2},x_3 \right\},
\left\{x_1,\frac{x_1+x_3}{x_2},\frac{(1+x_2)x_1+x_3}{x_2x_3} \right\},
\left\{x_1,\frac{(1+x_2)x_1 + x_3}{x_2 x_3},\frac{1+x_2}{x_3} \right\},
\left\{\frac{1+x_2}{x_1},\frac{x_1+(1+x_2)x_3}{x_1 x_2},\frac{(1+x_2)x_1 +(1+x_2)x_3}{x_1 x_2x_3}\right\},
\left\{\frac{1+x_2}{x_1},\frac{(1+x_2)x_1 +(1+x_2)x_3}{x_1 x_2x_3},
\frac{1+x_2}{x_3} \right\},
\left\{\frac{x_1+(1+x_2)x_3}{x_1x_2},\frac{x_1+x_3}{x_2},\frac{(1+x_2)x_1+(1+x_2)x_3}{x_1 x_2 x_3} \right\},
\left\{\frac{(1+x_2)x_1 +(1+x_2)x_3}{x_1 x_2x_3},\frac{x_1+x_3}{x_2},\frac{(1+x_2)x_1+x_3}{x_2 x_3} \right\},
\left\{\frac{(1+x_2)x_1+(1+x_2)x_3}{x_1 x_2 x_3},\frac{(1+x_2)x_1+x_3}{x_2 x_3},\frac{1+x_2}{x_3} \right\}.

There are 6 cluster variables other than the 3 initial ones x1, x2, x3 given by

\frac{1+x_2}{x_1},\frac{x_1 + x_3}{x_2},\frac{1+x_2}{x_3}, \frac{x_1+(1+x_2)x_3}{x_1x_2}, \frac{(1+x_2)x_1+x_3}{x_2 x_3}, \frac{(1+x_2)x_1 +(1+x_2)x_3}{x_1 x_2x_3}.

They correspond to the 6 positive roots of the Dynkin diagram A3: more precisely the denominators are monomials in x1, x2, x3, corresponding to the expression of positive roots as the sum of simple roots. The 3+6 cluster variables generate a cluster algebra of finite type, associated with the Dynkin diagram A3. The 14 clusters are the vertices of the cluster graph, which is an associahedron.

Grassmannians

Simple examples are given by the algebras of homogeneous functions on the Grassmannians. The Plücker coordinates provide some of the distinguished elements.

Mutation between two triangulations of the heptagon

For the Grassmannian of planes in ℂn, the situation is even more simple. In that case, the Plücker coordinates provide all the distinguished elements and the clusters can be completely described using triangulations of a regular polygon with n vertices. More precisely, clusters are in one-to-one correspondence with triangulations and the distinguished elements are in one-to-one correspondence with diagonals (line segments joining two vertices of the polygon). One can distinguish between diagonals in the boundary, which belong to every cluster, and diagonals in the interior. This corresponds to a general distinction between coefficient variables and cluster variables.

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Cluster (computing) — A computer cluster is a group of linked computers, working together closely so that in many respects they form a single computer. The components of a cluster are commonly, but not always, connected to each other through fast local area networks.… …   Wikipedia

  • Computer cluster — Not to be confused with data cluster. A computer cluster is a group of linked computers, working together closely thus in many respects forming a single computer. The components of a cluster are commonly, but not always, connected to each other… …   Wikipedia

  • Basic Linear Algebra Subprograms — (BLAS) is a de facto application programming interface standard for publishing libraries to perform basic linear algebra operations such as vector and matrix multiplication. They were first published in 1979, and are used to build larger packages …   Wikipedia

  • Tilting theory — It turns out that there are applications of our functors which make use of the analogous transformations which we like to think of as a change of basis for a fixed root system a tilting of the axes relative to the roots which results in a… …   Wikipedia

  • Timeline of Islamic science and engineering — This timeline of Islamic science and engineering covers the general development of science and technology in the Islamic world during the Islamic Golden Age, usually dated from the 7th to 16th centuries.From the 17th century onwards, the advances …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Parallel computing — Programming paradigms Agent oriented Automata based Component based Flow based Pipelined Concatenative Concurrent computing …   Wikipedia

  • Common Core State Standards Initiative — The Common Core State Standards Initiative is a U.S. education initiative that seeks to bring diverse state curricula into alignment with each other by following the principles of standards based education reform. The initiative is sponsored by… …   Wikipedia

  • Filter (mathematics) — The powerset algebra of the set {1,2,3,4} with the upset colored green. The green elements make a principal ultrafilter on the lattice. In mathematics, a filter is a special subset of a partially ordered set. A frequently used special case is the …   Wikipedia

  • 2-satisfiability — In computer science, 2 satisfiability (abbreviated as 2 SAT or just 2SAT) is the problem of determining whether a collection of two valued (Boolean or binary) variables with constraints on pairs of variables can be assigned values satisfying all… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”