Jerzy Neyman


Jerzy Neyman
Jerzy Neyman
Born April 16, 1894(1894-04-16)
Bendery, Bessarabia, Imperial Russia
Died August 5, 1981(1981-08-05) (aged 87)
Oakland, California
Nationality Polish American
Fields Mathematics
Institutions University of California, Berkeley
Alma mater University of Warsaw
Doctoral advisor Wacław Sierpiński
Doctoral students Wolfgang Bühler
Douglas Chapman
George Dantzig
Lucien Le Cam
Erich Leo Lehmann
Anastasios Tsiatis
Known for confidence interval
Notable awards Guy Medal

Jerzy Neyman (April 16, 1894 – August 5, 1981), born Jerzy Spława-Neyman, was a Polish American mathematician and statistician who spent most of his professional career at the University of California, Berkeley.

Life and career

He was born into a Polish family in Bendery, Bessarabia in Imperial Russia, the fourth of four children of Czesław Spława-Neyman and Kazimiera Lutosławska. His family was Roman Catholic and Neyman served as an altar boy during his early childhood. Later, Neyman would become an agnostic. Neyman's family descended from a long line of Polish nobles and military heroes. He graduated from the Kamianets-Podilskyi gubernial gymnasium for boys in 1909 under the name Yuri Cheslavovich Neyman.[1] He began studies at Kharkov University in 1912, where he was taught by Russian probabilist Sergei Natanovich Bernstein. After he read 'Lessons on the integration and the research of the primitive functions' by Henri Lebesgue, he was fascinated with measure and integration.

In 1921 he returned to Poland in a program of repatriation of POWs after the Polish-Soviet War. He earned his Doctor of Philosophy degree at University of Warsaw in 1924 for a dissertation titled "On the Applications of the Theory of Probability to Agricultural Experiments". He was examined by Wacław Sierpiński and Stefan Mazurkiewicz, among others. He spent a couple of years in London and Paris on a fellowship to study statistics with Karl Pearson and Émile Borel. After his return to Poland he established the Biometric Laboratory at the Nencki Institute of Experimental Biology in Warsaw.

He published many books dealing with experiments and statistics, and devised the way which the FDA tests medicines today.

Neyman proposed and studied randomized experiments in 1923.[2] His paper "On the Two Different Aspects of the Representative Method: The Method of Stratified Sampling and the Method of Purposive Selection", given at the Royal Statistical Society on 19 June 1934,[3] was the groundbreaking event leading to modern scientific sampling. He introduced the confidence interval in his paper in 1937.[4] Another noted contribution is the Neyman-Pearson lemma.

In 1938 he moved to Berkeley, where he worked for the rest of his life. Thirty-nine students received their Ph.D's under his advisorship. In 1966 he was awarded the Guy Medal of the Royal Statistical Society and three years later the (American) Medal of Science. He died in Oakland, California.

References

  1. ^ Выпускники Каменец-Подольской гимназии 1883-1920
  2. ^ Neyman, Jerzy. 1923 [1990]. “On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9.” Statistical Science 5 (4): 465–472. Trans. Dorota M. Dabrowska and Terence P. Speed.
  3. ^ Neyman, J.(1934) "On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection", Journal of the Royal Statistical Society, 97 (4), 557–625 JSTOR 2342192
  4. ^ Neyman, Jerzy (30 1937). "Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 236 (767): 333–380. doi:10.1098/rsta.1937.0005. JSTOR 91337 
  • Fisher, Ronald "Statistical methods and scientific induction" J. Roy. Statist. Soc. Ser. B. 17 (1955), 69—78. (criticism of statistical theories of Jerzy Neyman and Abraham Wald)
  • Neyman, Jerzy (1956). "Note on an Article by Sir Ronald Fisher". Journal of the Royal Statistical Society. Series B (Methodological) 18 (2): 288–294. JSTOR 2983716.  (reply to Fisher 1955)
  • Reid, Constance, Jerzy Neyman—From Life, Springer Verlag, (1982), ISBN 0387907475

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Jerzy Neyman — (16 avril 1894 5 août 1981) est considéré comme un des grands fondateurs de la statistique moderne. Il a contribué très largement à la théorie des probabilités, vérifiant les hypothèses, les intervalles de confiance et… …   Wikipédia en Français

  • Jerzy Neyman — (* 16. April 1894 in Bendery, Moldawien; † 5. August 1981 in Oakland, Kalifornien) war ein polnischer Mathematiker und Autor wichtiger statistischer Bücher. Das Neyman Pearson Lemma ist nach ihm benannt. Neyman in Warschau 1973 …   Deutsch Wikipedia

  • Jerzy Neyman — Jerzy Neyman(16 de abril de 1894, en Moldavia – 5 de agosto de 1981, California) fue un matemático polaco. Fue el segundo de cuatro hijos de Czesław Spława Neyman y Kazimiera Lutosławska. Publicó muchos libros relacionados a experimentos y… …   Wikipedia Español

  • Jerzy — Pronunciation [ˈjɛʐɨ][1] Gender masculine Language(s) Polish Other names …   Wikipedia

  • Neyman — ist der Familienname folgender Personen: Benny Neyman (1951–2008), niederländischer Sänger Jerzy Neyman (1894–1981), polnischer Mathematiker Jozef Neyman (1764–1835), polnischer Publizist Lech Neyman (1908–1948), polnischer Politiker Siehe auch… …   Deutsch Wikipedia

  • Neyman-Pearson-Lemma — Das Neyman Pearson Lemma ist ein Satz der mathematischen Statistik, der eine Optimalitätsaussage über die Konstruktion eines Hypothesentests macht. Gegenstand des Neyman Pearson Lemmas ist das denkbar einfachste Szenario eines Hypothesentests:… …   Deutsch Wikipedia

  • Neyman–Pearson lemma — In statistics, the Neyman Pearson lemma, named after Jerzy Neyman and Egon Pearson, states that when performing a hypothesis test between two point hypotheses H0: θ = θ0 and H1: θ = θ1, then the likelihood ratio test …   Wikipedia

  • Neyman-Pearson lemma — In statistics, the Neyman Pearson lemma states that when performing a hypothesis test between two point hypotheses H 0: θ = θ 0 and H 1: θ = θ 1, then the likelihood ratio test which rejects H 0 in favour of H 1 when:Lambda(x)=frac{ L( heta {0}… …   Wikipedia

  • Neyman, Jerzy — ▪ Russian American statistician born April 16, 1894, Bendery, Russia died Aug. 5, 1981, Oakland, Calif., U.S.       Russian–U.S. mathematician and statistician who helped to establish the statistical theory of hypothesis testing. Neyman was a… …   Universalium

  • Lemme De Neyman-Pearson — En statistiques, le Lemme de Neyman Pearson stipule que lorsque l on effectue un test d hypothèse entre deux hypothèses H0: θ=θ0 et H1: θ=θ1, alors le test du rapport de vraisemblance qui rejette H0 en faveur de H1 lorsque où est le… …   Wikipédia en Français


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.