Command pattern


Command pattern

In object-oriented programming, the command pattern is a design pattern in which an object is used to represent and encapsulate all the information needed to call a method at a later time. This information includes the method name, the object that owns the method and values for the method parameters.

Three terms always associated with the command pattern are client, invoker and receiver. The client instantiates the command object and provides the information required to call the method at a later time. The invoker decides when the method should be called. The receiver is an instance of the class that contains the method's code.

Using command objects makes it easier to construct general components that need to delegate, sequence or execute method calls at a time of their choosing without the need to know the owner of the method or the method parameters.

Contents

Uses

Command objects are useful for implementing:

Multi-level undo 
If all user actions in a program are implemented as command objects, the program can keep a stack of the most recently executed commands. When the user wants to undo a command, the program simply pops the most recent command object and executes its undo() method.
Transactional behavior 
Similar to undo, a database engine or software installer may keep a list of operations that have been or will be performed. Should one of them fail, all others can be reverted or discarded (usually called rollback). For example, if two database tables which refer to each other must be updated, and the second update fails, the transaction can be rolled back, so that the first table does not now contain an invalid reference.
Progress bars 
Suppose a program has a sequence of commands that it executes in order. If each command object has a getEstimatedDuration() method, the program can easily estimate the total duration. It can show a progress bar that meaningfully reflects how close the program is to completing all the tasks.
Wizards 
Often a wizard presents several pages of configuration for a single action that happens only when the user clicks the "Finish" button on the last page. In these cases, a natural way to separate user interface code from application code is to implement the wizard using a command object. The command object is created when the wizard is first displayed. Each wizard page stores its GUI changes in the command object, so the object is populated as the user progresses. "Finish" simply triggers a call to execute(). This way, the command class contains no user interface code.
GUI buttons and menu items 
In Swing and Borland Delphi programming, an Action is a command object. In addition to the ability to perform the desired command, an Action may have an associated icon, keyboard shortcut, tooltip text, and so on. A toolbar button or menu item component may be completely initialized using only the Action object.
Thread pools 
A typical, general-purpose thread pool class might have a public addTask() method that adds a work item to an internal queue of tasks waiting to be done. It maintains a pool of threads that execute commands from the queue. The items in the queue are command objects. Typically these objects implement a common interface such as java.lang.Runnable that allows the thread pool to execute the command even though the thread pool class itself was written without any knowledge of the specific tasks for which it would be used.
Macro recording 
If all user actions are represented by command objects, a program can record a sequence of actions simply by keeping a list of the command objects as they are executed. It can then "play back" the same actions by executing the same command objects again in sequence. If the program embeds a scripting engine, each command object can implement a toScript() method, and user actions can then be easily recorded as scripts.
Networking 
It is possible to send whole command objects across the network to be executed on the other machines, for example player actions in computer games.
Parallel Processing 
Where the commands are written as tasks to a shared resource and executed by many threads in parallel (possibly on remote machines -this variant is often referred to as the Master/Worker pattern)
Mobile Code 
Using languages such as Java where code can be streamed/slurped from one location to another via URLClassloaders and Codebases the commands can enable new behavior to be delivered to remote locations (EJB Command, Master Worker)

Structure

Command Design Pattern Class Diagram.png

  • The explanation for the Receiver block above should be "The actual work to be done by the command (action)"

Terminology

The terminology used to describe command pattern implementations is not consistent and can therefore be confusing. This is the result of ambiguity, the use of synonyms, and implementations that may obscure the original pattern by going well beyond it.

  1. Ambiguity.
    1. The term command is ambiguous. For example, move up, move up may refer to a single (move up) command that should be executed twice, or it may refer to two commands, each of which happens to do the same thing (move up). If the former command is added twice to an undo stack, both items on the stack refer to the same command instance. This may be appropriate when a command can always be undone the same way (e.g. move down). Both the Gang of Four and the Java example below use this interpretation of the term command. On the other hand, if the latter commands are added to an undo stack, the stack refers to two separate objects. This may be appropriate when each object on the stack must contain information that allows the command to be undone. For example, to undo a delete selection command, the object may contain a copy of the deleted text so that it can be re-inserted if the delete selection command must be undone. Note that using a separate object for each invocation of a command is also an example of the chain of responsibility pattern.
    2. The term execute is also ambiguous. It may refer to running the code identified by the command object's execute method. However, in Microsoft's Windows Presentation Foundation a command is considered to have been executed when the command's execute method has been invoked, but that does not necessarily mean that the application code has run. That occurs only after some further event processing.
  2. Synonyms and homonyms.
    1. Client, Source, Invoker: the button, toolbar button, or menu item clicked, the shortcut key pressed by the user.
    2. Command Object, Routed Command Object, Action Object: a singleton object (e.g. there is only one CopyCommand object), which knows about shortcut keys, button images, command text, etc. related to the command. A source/invoker object calls the Command/Action object's execute/performAction method. The Command/Action object notifies the appropriate source/invoker objects when the availability of a command/action has changed. This allows buttons and menu items to become inactive (grayed out) when a command/action cannot be executed/performed.
    3. Receiver, Target Object: the object that is about to be copied, pasted, moved, etc. The receiver object owns the method that is called by the command's execute method. The receiver is typically also the target object. For example, if the receiver object is a cursor and the method is called moveUp, then one would expect that the cursor is the target of the moveUp action. On the other hand, if the code is defined by the command object itself, the target object will be a different object entirely.
    4. Command Object, routed event args, event object: the object that is passed from the source to the Command/Action object, to the Target object to the code that does the work. Each button click or shortcut key results in a new command/event object. Some implementations add more information to the command/event object as it is being passed from one object (e.g. CopyCommand) to another (e.g. document section). Other implementations put command/event objects in other event objects (like a box inside a bigger box) as they move along the line, to avoid naming conflicts. (See also chain of responsibility pattern).
    5. Handler, ExecutedRoutedEventHandler, method, function: the actual code that does the copying, pasting, moving, etc. In some implementations the handler code is part of the command/action object. In other implementations the code is part of the Receiver/Target Object, and in yet other implementations the handler code is kept separate from the other objects.
    6. Command Manager, Undo Manager, Scheduler, Queue, Dispatcher, Invoker: an object that puts command/event objects on an undo stack or redo stack, or that holds on to command/event objects until other objects are ready to act on them, or that routes the command/event objects to the appropriate receiver/target object or handler code.
  3. Implementations that go well beyond the original command pattern.
    1. Microsoft's Windows Presentation Foundation (WPF), introduces routed commands, which combine the command pattern with event processing. As a result the command object no longer contains a reference to the target object nor a reference to the application code. Instead, invoking the command object's execute command results in a so called Executed Routed Event which during the event's tunneling or bubbling may encounter a so called binding object which identifies the target and the application code, which is executed at that point.

Example

Consider a "simple" switch. In this example we configure the Switch with 2 commands: to turn the light on and to turn the light off.

A benefit of this particular implementation of the command pattern is that the switch can be used with any device, not just a light - the Switch in the following example turns a light on and off, but the Switch's constructor is able to accept any subclasses of Command for its 2 parameters. For example, you could configure the Switch to start an engine.

Note: A criticism of the sample application below is that it doesn't truly model an electrical circuit. An electrical switch is dumb. A true binary switch knows only that it is either on or off. It does not know about or have any direct relationship with the various loads that might be attached to a circuit (i.e. you hook up a switch to a circuit, not directly to a load). The switch should simply publish an event of its current state (either an ON or OFF). The circuit then should contain a State Engine which manages circuit states at various points along it (by listening to switch events) in order to properly accommodate complex circuits with multiple loads and switches. Each load is then conditional to a specific circuit's state (not directly to any specific switch). In conclusion, the switch itself should not be aware of any lamp details.

/* The Invoker class */
public class Switch {
 
    private Command flipUpCommand;
    private Command flipDownCommand;
 
    public Switch(Command flipUpCmd, Command flipDownCmd) {
         this.flipUpCommand = flipUpCmd;
         this.flipDownCommand = flipDownCmd;
    }
 
    public void flipUp() {
         flipUpCommand.execute();
    }
 
    public void flipDown() {
         flipDownCommand.execute();
    }
}
 
/* The Receiver class */
public class Light {
 
     public Light() { }
 
     public void turnOn() {
        System.out.println("The light is on");
     }
 
     public void turnOff() {
        System.out.println("The light is off");
     }
}
 
/* The Command interface */
public interface Command {
    void execute();
}
 
/* The Command for turning the light on in North America, or turning the light off in most other places */
public class FlipUpCommand implements Command {
 
   private Light theLight;
 
   public FlipUpCommand(Light light) {
        this.theLight = light;
   }
 
   public void execute(){
      theLight.turnOn();
   }
}
 
/* The Command for turning the light off in North America, or turning the light on in most other places */
public class FlipDownCommand implements Command {
 
   private Light theLight;
 
   public FlipDownCommand(Light light) {
        this.theLight = light;
   }
 
   public void execute() {
      theLight.turnOff();
   }
}
 
/* The test class or client */
public class PressSwitch {
 
   public static void main(String[] args) {
       Light lamp = new Light();
       Command switchUp = new FlipUpCommand(lamp);
       Command switchDown = new FlipDownCommand(lamp);
 
       // See criticism of this model above:
       // The switch itself should not be aware of lamp details (switchUp, switchDown) 
       // either directly or indirectly
       Switch s = new Switch(switchUp, switchDown);
 
       try {
           if (args[0].equalsIgnoreCase("ON")) {
                s.flipUp();
           } else if (args[0].equalsIgnoreCase("OFF")) {
               s.flipDown();
           } else {
               System.out.println("Argument \"ON\" or \"OFF\" is required.");
           }
       } catch (Exception e) {
           System.out.println("Arguments required.");
       }
   }
}
class Switch:
    """ The INVOKER class"""
    def __init__(self, flipUpCmd, flipDownCmd):
        self.__flipUpCommand = flipUpCmd
        self.__flipDownCommand = flipDownCmd
    def flipUp(self):
        self.__flipUpCommand.execute()
    def flipDown(self):
        self.__flipDownCommand.execute()
 
class Light:
    """The RECEIVER Class"""
    def turnOn(self):
            print "The light is on"
    def turnOff(self):
            print "The light is off"
 
class Command:
    """The Command Abstract class"""
    def __init__(self):
            pass
 
    def execute(self):
            pass
 
class FlipUpCommand(Command):
    """The Command class for turning on the light"""
    def __init__(self,light):
            self.__light = light
    def execute(self):
            self.__light.turnOn()
class FlipDownCommand(Command):
    """The Command class for turning off the light"""
    def __init__(self,light):
            Command.__init__(self)
            self.__light = light
    def execute(self):
        self.__light.turnOff()
 
class LightSwitch:
    """ The Client Class"""
    def __init__(self):
            self.__lamp = Light()
            self.__switchUp = FlipUpCommand(self.__lamp)
            self.__switchDown = FlipDownCommand(self.__lamp)
            self.__switch = Switch(self.__switchUp,self.__switchDown)
    def switch(self,cmd):
            cmd = cmd.strip().upper()
            try:
                if cmd == "ON":
                    self.__switch.flipUp()
                elif cmd == "OFF":
                    self.__switch.flipDown()
                else:
                        print "Argument \"ON\" or \"OFF\" is required."
            except Exception, msg:
                print "Exception occurred: %s" % msg
 
# Execute if this file is run as a script and not imported as a module
 
if __name__ == "__main__":
    lightSwitch = LightSwitch()
    print "Switch ON test."
    lightSwitch.switch("ON")
    print "Switch OFF test"
    lightSwitch.switch("OFF")
    print "Invalid Command test"
    lightSwitch.switch("****")


See also

References

  • Freeman, E; Sierra, K; Bates, B (2004). Head First Design Patterns. O'Reilly.
  • GoF - Design Patterns

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Command Pattern — Das Kommando oder der Befehl (engl. Command) ist ein Entwurfsmuster aus dem Bereich der Softwareentwicklung und gehört als eines der GoF Muster zu der Kategorie der Verhaltensmuster (Behavioral Patterns). Es dient zum Kapseln von Anfragen als… …   Deutsch Wikipedia

  • Command — may refer to: Command (computing), a statement in a computer language COMMAND.COM, the default operating system shell and command line interpreter for DOS Command (military formation), an organizational unit Command key, a modifier key on Apple… …   Wikipedia

  • Command (patrón de diseño) — En programación orientada a objetos, Command es un patrón de diseño. Contenido 1 Intención 2 Propósito 3 Motivo 4 Aplicaciones …   Wikipedia Español

  • Command queue — A command queue is a queue for delaying the execution of commands, usually either in order of priority or on a first in first out basis.[1] They are often useful in synchronous applications, where a command executor may receive a new command… …   Wikipedia

  • Command-query separation — (CQS) is a principle of imperative computer programming. It was devised by Bertrand Meyer as part of his pioneering work on the Eiffel programming language. It states that every method should either be a command that performs an action, or a… …   Wikipedia

  • Command neuron — A command neuron is a single neuron (or small set of neurons) whose stimulation results in the evocation of an endogenous, specific, naturally occurring behavior pattern (Carew, 2000). Command neurons act as neural decision making cells; push… …   Wikipedia

  • Pattern — A pattern, from the French patron, is a theme of recurring events or objects, sometimes referred to as elements of a set. These elements repeat in a predictable manner. It can be a template or model which can be used to generate things or parts… …   Wikipedia

  • Pattern 1796 light cavalry sabre — The Pattern 1796 Light Cavalry Sabre, is a sword that was used primarily by British Light Dragoons and hussars, and Kings German Legion light cavalry during the Napoleonic Wars. It was adopted by the Prussians (as the 1811 pattern or Blücher… …   Wikipedia

  • Behavioral pattern — In software engineering, behavioral design patterns are design patterns that identify common communication patterns between objects and realize these patterns. By doing so, these patterns increase flexibility in carrying out this communication.… …   Wikipedia

  • Design Pattern — Patron de conception Pour les articles homonymes, voir Patron. Un patron de conception (design pattern en anglais) est un concept de génie logiciel destiné à résoudre les problèmes récurrents suivant le paradigme objet. En français on utilise… …   Wikipédia en Français


We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.