Prokaryote


Prokaryote

The prokaryotes (pronEng|proʊˈkærioʊts; singular prokaryote IPA|/proʊˈkæriət/) are a group of organisms that lack a cell nucleus (= karyon), or any other membrane-bound organelles. They differ from the eukaryotes, which have a cell nucleus. Most are unicellular, but a few prokaryotes such as Myxobacteria have multicellular stages in their life cycles. [cite journal |author=Kaiser D |title=Coupling cell movement to multicellular development in myxobacteria |journal=Nat. Rev. Microbiol. |volume=1 |issue=1 |pages=45–54 |year=2003 |month=October |pmid=15040179 |doi=10.1038/nrmicro733] The word "prokaryote" comes from the Greek "πρό- (pro-)" "before" + "καρυόν (karyon)" "nut or kernel", referring to the cell nucleus, + suffix "-ώτης (-ōtēs)" (pl. "-ώτες (-ōtes)"). It is also spelled "procaryote".Campbell, N. "Biology:Concepts & Connections". Pearson Education. San Francisco: 2003.] The prokaryotes are divided into two domains: the bacteria and the archaea. Archaea are a newly appointed domain of life. These organisms were originally thought to live only in inhospitable conditions such as extremes of temperature, pH, and radiation but have since been found in all types of habitats.

Relationship to eukaryotes

A distinction between prokaryotes and eukaryotes (meaning true kernel, also spelled "eucaryotes") is that eukaryotes do have "true" nuclei containing their DNA, whereas the genetic material in prokaryotes is not membrane-bound. Eukaryotic organisms may be unicellular, as in amoebae, or multicellular, as in plants and humans. The difference between the structure of prokaryotes and eukaryotes is so great that it is considered to be the most important distinction among groups of organisms. In 1977, Carl Woese proposed dividing prokaryotes into the Bacteria and Archaea (originally Eubacteria and Archaebacteria) because of the major differences in the structure and genetics between the two groups of organisms. This arrangement of Eukaryota (also called "Eukarya"), Bacteria, and Archaea is called the three-domain system replacing the traditional two-empire system. A criticism of this classification is that the word "prokaryote" itself is based on what these organisms are not (they are not eukaryotic), rather than what they are (either archaea or bacteria).

The cell structure of prokaryotes differs greatly from that of eukaryotes. The defining characteristic is the absence of a nucleus. The genomes of prokaryotes are held within an irregular DNA/protein complex in the cytosol called the nucleoid, which lacks a nuclear envelope. [cite journal |author=Thanbichler M, Wang S, Shapiro L |title=The bacterial nucleoid: a highly organized and dynamic structure |journal=J Cell Biochem |volume=96 |issue=3 |pages=506–21 |year=2005 |pmid=15988757 | doi = 10.1002/jcb.20519] Prokaryotes generally lack membrane-bound cell compartments: such as mitochondria and chloroplasts. Instead processes such as oxidative phosphorylation and photosynthesis take place across the prokaryotic plasma membrane. [cite journal |author=Harold F |title=Conservation and transformation of energy by bacterial membranes | url=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=4261111 |journal=Bacteriol Rev |volume=36 |issue=2 |pages=172–230 |year=1972 |pmid=4261111] However, prokaryotes do possess some internal structures, such as vacuole and cytoskeletons, [cite journal |author=Shih YL, Rothfield L |title=The bacterial cytoskeleton |journal=Microbiol. Mol. Biol. Rev. |volume=70 |issue=3 |pages=729–54 |year=2006 |pmid=16959967 |url=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16959967 | doi = 10.1128/MMBR.00017-06] [cite journal |author=Michie KA, Löwe J |title=Dynamic filaments of the bacterial cytoskeleton |journal=Annu. Rev. Biochem. |volume=75 |issue= |pages=467–92 |year=2006 |pmid=16756499 |url=http://www2.mrc-lmb.cam.ac.uk/SS/Lowe_J/group/PDF/annrev2006.pdf | doi = 10.1146/annurev.biochem.75.103004.142452] and the bacterial order Planctomycetes have a membrane around their nucleoid and contain other membrane-bound cellular structures. [cite journal |author=Fuerst J |title=Intracellular compartmentation in planctomycetes |journal=Annu Rev Microbiol |volume=59 |pages=299–328 |year=2005 |pmid=15910279 | doi = 10.1146/annurev.micro.59.030804.121258 ] Both eukaryotes and prokaryotes contain large RNA/protein structures called ribosomes, which produce protein. Prokaryotes are usually much smaller than eukaryotic cells.

Prokaryotes also differ from eukaryotes in that they contain only a single loop of stable chromosomal DNA stored in an area named the nucleoid, while eukaryote DNA is found on tightly bound and organized chromosomes. Although some eukaryotes have satellite DNA structures called plasmids, these are generally regarded as a prokaryote feature, and many important genes in prokaryotes are stored on plasmids.

Prokaryotes have a larger surface area to volume ratio giving them a higher metabolic rate, a higher growth rate and consequently a shorter generation time compared to Eukaryotes.

ociality

While prokaryotes are still commonly imagined to be strictly unicellular, most are capable of forming stable aggregate communities. When such communities are encased in a stabilizing polymer matrix (“slime”), they may be called “biofilms”. Cutting edge research shows that, like those in multicellular organisms, cells in biofilms often show distinct patterns of gene expression (phenotypic differentiation) in time and space. Also, like multicellular eukaryotes, these changes in expression appear to often result from cell-to-cell signaling, a phenomenon known as quorum sensing.

Biofilms may be highly heterogeneous and structurally complex and may attach to solid surfaces, or exist at liquid-air interfaces, or potentially even liquid-liquid interfaces. Bacterial biofilms are often comprised of microcolonies (approximately dome-shaped masses of bacteria and matrix) separated by “voids” through which the medium (e.g. water) may flow relatively uninhibited. The microcolonies may join together above the substratum to form a continuous layer, closing the network of channels separating microcolonies. This structural complexity—combined with observations that oxygen limitation (a ubiquitous challenge for anything growing in size beyond the scale of diffusion) is at least partially eased by movement of medium throughout the biofilm—has led some to speculate that this may constitute a circulatory system [Costeron, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., and Lappin-Scott, H. M. 1995. “Microbial biofilms.” Annu. Rev. Microbiol. 49: 711-45.] .

It is not surprising that many researchers have started calling prokaryotic communities multicellular (for example [Shapiro, J. A. 1998. “Thinking about bacterial populations as multicellular organisms.” Annu. Rev. Microbiol. 52: 81-104.] ). Differential cell expression, collective behavior, signaling, programmed cell death, and (in some cases) discrete biological dispersal events all seem to point in this direction. However, these colonies are seldom if ever founded by a single founder (in the way that animals and plants are founded by single cells), which presents a number of theoretical issues. Most explanations of co-operation and the evolution of multicellularity have focused on high relatedness between members of a group (or colony, or whole organism). If a copy of a gene is present in all members of a group, behaviors that promote cooperation between members may permit those members to have (on average) greater fitness than a similar group of selfish individuals [Hamilton, W. D. 1964. “The genetical evolution of social behavior. II.” J. Theor. Biol.7:17-52.] (see inclusive fitness and Hamilton's rule). What to make of prokaryotic communities clearly founded by many (most likely unrelated) individuals, yet defined by (apparently) high levels of cooperation, communication, and coordinated behavior?

It is likely that these instances of prokaryotic sociality are the rule rather than the exception, a fact that has serious implications for the way we view prokaryotes in general and the way we deal with them in medicine. Bacterial biofilms may be 100x more resistant to antibiotics than free-living unicells and may be nearly impossible to remove from surfaces once they have colonized them [Costerton, J. W., Stewart, P. S., and Greenberg, E. P. 1999. “Bacterial biofilms: a common cause of persistent infections.” Science 284: 1318-1322.] . Other aspects of bacterial cooperation—such as bacterial conjugation and quorum-sensing mediated pathogenicity—present additional challenges to researchers and medical professionals seeking to treat the associated diseases.

Reproduction

Bacteria and archaea reproduce through asexual reproduction, usually by binary fission or budding. Genetic exchange and recombination still occur, but this is a form of horizontal gene transfer and is not a replicative process, simply involving DNA being transferred between two cells, as in bacterial conjugation.

tructure

Recent research indicates that all prokaryotes actually do have cytoskeletons, albeit more primitive than those of eukaryotes. Besides homologues of actin and tubulin (MreB and FtsZ) the helically arranged building block of the flagellum, flagellin, is one of the most significant cytoskeletal proteins of bacteria as it provides structural backgrounds of chemotaxis, the basic cell physiological response of bacteria. At least some prokaryotes also contain intracellular structures which can be seen as primitive organelles. Membranous organelles (a.k.a. intracellular membranes) are known in some groups of prokaryotes, such as vacuoles or membrane systems devoted to special metabolic properties, e.g. photosynthesis or chemolithotrophy. Additionally, some species also contain protein-enclosed microcompartments, which have distinct physiological roles (e.g. carboxysomes or gas vacuoles).

Procaryotes vary in size between 0.2µm and 700µm (Thiomargarita namibiensis up to 750µm).

Morphology of prokaryotic cells

Prokaryotic cells have various shapes; the four basic shapes are: [Bauman, R. w. "Microbiology". Pearson Education. San Francisco: 2006.]
* Cocci - spherical
* Bacilli - rod shaped
* Spirilla - spiral shaped
* Vibrio - comma shaped

Environment

Prokaryotes live in nearly all environments on earth where there is liquid water. Some archaea and bacteria thrive in harsh conditions, such as high temperatures (thermophiles) or high salinity (halophiles). Organisms such as these are referred to as extremophiles. Many archaea grow as plankton in the oceans. Symbiotic prokaryotes live in or on the bodies of other organisms, including humans.

Evolution of prokaryotes

It is generally accepted that the first living organisms were some form of prokaryotes, which may have evolved out of protobionts. The oldest known fossilized prokaryotes were laid down approximately 3.5 billion years ago, only about 1 billion years after the formation of the earth's crust. Even today, prokaryotes are perhaps the most successful and abundant life forms. Eukaryotes only formed later, from endosymbiosis of multiple prokaryote ancestors. The oldest known fossil eukaryotes are about 1.7 billion years old. However, some genetic evidence suggests eukaryotes appeared as early as 3 billion years ago. [Carl Woese, J Peter Gogarten, " [http://www.sciam.com/askexpert_question.cfm?articleID=000C32DD-60E1-1C72-9EB7809EC588F2D7&catID=3&topicID=3 When did eukaryotic cells (cells with nuclei and other internal organelles) first evolve? What do we know about how they evolved from earlier life-forms?] " "Scientific American", October 21, 1999.]

While Earth is the only place in the universe where life is known to exist, some have suggested that there is evidence on Mars of fossil or living prokaryotes; [cite journal |author=McSween HY |title=Evidence for life in a martian meteorite? |journal=GSA Today |volume=7 |issue=7 |pages=1–7 |year=1997 |pmid=11541665] [cite journal|title= Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001|author= McKay D. S., Gibson E. K., ThomasKeprta K. L., Vali H., Romanek C. S., Clemett S. J., Chillier X. D. F., Maechling C. R., Zare R. N.|journal=Science|volume= 273|pages=924–930|year=1996 | doi = 10.1126/science.273.5277.924 ] but this possibility remains the subject of considerable debate and skepticism.cite web | title=After 10 years, few believe life on Mars | url=http://www.space.com/scienceastronomy/ap_060806_mars_rock.html | last=Crenson | first=Matt | publisher=Associated Press (on [http://www.space.com space.com] | date=2006-08-06 | accessdate=2006-08-06] [cite journal |author=Scott ER |title=Origin of carbonate-magnetite-sulfide assemblages in Martian meteorite ALH84001 |journal=J. Geophys. Res. |volume=104 |issue=E2 |pages=3803–13 |year=1999 |pmid=11542931 | doi = 10.1029/1998JE900034 ]

Prokaryotes have diversified greatly throughout their long existence. The metabolism of prokaryotes is far more varied than that of eukaryotes, leading to many highly distinct prokaryotic types. For example, in addition to using photosynthesis or organic compounds for energy, as eukaryotes do, prokaryotes may obtain energy from inorganic compounds such as hydrogen sulfide. This enables prokaryotes to thrive in harsh environments as cold as the snow surface of Antarctica, and as hot as undersea hydrothermal vents and land-based hot springs.

References

ee also

*Archaea and Bacteria, the two prokaryotic taxa
*Monera, an obsolete kingdom including both of the above
*Bacterial cell structure
*Nanobe
*Virus
*Prion
*Symbiogenesis

External links

* [http://wiki.biomine.skelleftea.se/wiki/index.php/Prokaryote_versus_eukaryote Prokaryote versus eukaryote, BioMineWiki]


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • prokaryote — 1925, from Fr. procaryote, from Gk. pro (see PRO (Cf. pro )) + karyon “nut, kernel.” …   Etymology dictionary

  • prokaryote — [prō kar′ē ōt΄] n. [< Gr pro , before + karyōtis: see EUKARYOTE] an organism lacking a true nucleus: in some systems of biological classification, any of a superkingdom (Prokaryotae) of organisms, including the viruses and monerans: cf.… …   English World dictionary

  • prokaryote — also procaryote noun Etymology: New Latin Prokaryotes, proposed subdivision of protists, from 1pro + kary + otes, plural noun suffix, from Greek ōtos more at otic Date: 1963 any of the typically unicellular microorganisms that lack a distinct… …   New Collegiate Dictionary

  • prokaryote — prokaryotic /proh kar ee ot ik/, adj. /proh kar ee oht , ee euht/, n. any cellular organism that has no nuclear membrane, no organelles in the cytoplasm except ribosomes, and has its genetic material in the form of single continuous strands… …   Universalium

  • prokaryote — noun a) an organism characterized by the absence of a nuclear membrane and by DNA that is not organized into chromosomes. b) in the of biological taxonomy, an organism of the kingdom (now superseded) …   Wiktionary

  • Prokaryote — Cell lacking a discrete nucleus and other special subcellular compartments. Bacteria and viruses are prokaryotes. Humans are not prokaryotes, but rather eukaryotes. * * * A member of the superkingdom Prokaryotae; an organismic unit consisting of… …   Medical dictionary

  • prokaryote —    A unicellular organism lacking a membranebound nucleus, for example, bacteria. Prokaryotes do not undergo mitosis …   Forensic science glossary

  • prokaryote — n. unicellular organism that does not have a nuclear membrane or cell organelles (such as bacteria and blue green algae) …   English contemporary dictionary

  • prokaryote — [prəʊ karɪəʊt, ɒt] (also procaryote) noun Biology a single celled organism with neither a distinct nucleus with a membrane nor other specialized structures (i.e. a bacterium or archaean). Compare with eukaryote. Derivatives prokaryotic adjective… …   English new terms dictionary

  • prokaryote — pro·kary·ote …   English syllables


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.