Mirror galvanometer


Mirror galvanometer
A mirror galvanometer

A mirror galvanometer is a mechanical meter that senses electric current, except that instead of moving a needle, it moves a mirror. The mirror reflects a beam of light, which projects onto a meter, and acts as a long, weightless, massless pointer. In 1826, Johann Christian Poggendorff developed the mirror galvanometer for detecting electric currents. The apparatus is also known as a spot galvanometer after the spot of light produced in some models.

Mirror galvanometers were used extensively in scientific instruments before reliable, stable electronic amplifiers were available. The most common uses were as recording equipment for seismometers and submarine cables used for telegraphy.

In modern times, the term mirror galvanometer is also used for devices that move laser beams by rotating a mirror through a galvanometer set-up.


Contents

Kelvin's galvanometer

Thomson mirror galvanometer of tripod type, from around 1900.
Galvanometer by H.W. Sullivan, London. Late 19th or early 20th century. This galvanometer was used at the transatlantic cable station, Halifax, NS, Canada.

The mirror galvanometer was later improved by William Thomson, later to become Lord Kelvin. He would patent the device in 1858.

Thomson reacted to the need for an instrument that could indicate with sensibility all the variations of the current in a long cable. This instrument was far more sensitive than any which preceded it, enabling the detection of the slightest defect in the core of a cable during its manufacture and submersion. Moreover, it proved the best apparatus for receiving messages through a long cable.

The following is adapted from a contemporary account[1] of Thomson's instrument:

The mirror galvanometer consists of a long fine coil of silk-covered copper wire. In the heart of that coil, within a little air-chamber, a small round mirror is hung by a single fibre of floss silk, with four tiny magnets cemented to its back. A beam of light is thrown from a lamp upon the mirror, and reflected by it upon a white screen or scale a few feet distant, where it forms a bright spot of light. When there is no current on the instrument, the spot of light remains stationary at the zero position on the screen; but the instant a current traverses the long wire of the coil, the suspended magnets twist themselves horizontally out of their former position, the mirror is of course inclined with them, and the beam of light is deflected along the screen to one side or the other, according to the nature of the current. If a positive electric current gives a deflection to the right of zero, a negative current will give a deflection to the left of zero, and vice versa.

The air in the little chamber surrounding the mirror is compressed at will, so as to act like a cushion, and deaden the movements of the mirror. The needle is thus prevented from idly swinging about at each deflection, and the separate signals are rendered abrupt. At a receiving station the current coming in from the cable has simply to be passed through the coil before it is sent into the ground, and the wandering light spot on the screen faithfully represents all its variations to the clerk, who, looking on, interprets these, and cries out the message word by word. The small weight of the mirror and magnets which form the moving part of this instrument, and the range to which the minute motions of the mirror can be magnified on the screen by the reflected beam of light, which acts as a long impalpable hand or pointer, render the mirror galvanometer marvellously sensitive to the current, especially when compared with other forms of receiving instruments. Messages could be sent from the UK to the USA through one Atlantic cable and back again through another, and there received on the mirror galvanometer, the electric current used being that from a toy battery made out of a lady's silver thimble, a grain of zinc, and a drop of acidulated water.

The practical advantage of this extreme delicacy is that the signal waves of the current may follow each other so closely as almost entirely to coalesce, leaving only a very slight rise and fall of their crests, like ripples on the surface of a flowing stream, and yet the light spot will respond to each. The main flow of the current will of course shift the zero of the spot, but over and above this change of place the spot will follow the momentary fluctuations of the current which form the individual signals of the message. What with this shifting of the zero and the very slight rise and fall in the current produced by rapid signalling, the ordinary land line instruments are quite unserviceable for work upon long cables.

Moving coil galvanometer

Moving coil galvanometer was developed independently by Marcel Deprez and Jacques-Arsène d'Arsonval about 1880. Deprez's galvanometer was developed for high currents, while D'Arsonval designed his to measure weak currents. Unlike in the Kelvin's galvanometer, in this type of galvanometer the magnet is stationary and the coil is suspended in the magnet gap. The mirror attached to the coil frame rotates together with it. This form of instrument can be more sensitive and accurate and it replaced the Kelvin's galvanometer in most applications. The moving coil galvanometer is practically immune to ambient magnetic fields. Another important feature is self-damping generated by the electro-magnetic forces due to the currents induced in the coil by its movements the magnetic field. These are proportional to the angular velocity of the coil.

Modern mirror galvanometer from Scanlab.

Modern mirror galvanometers

In modern times, high-speed mirror galvanometers are employed in laser light shows to move the laser beams and produce colorful geometric patterns in fog around the audience. Such high speed mirror galvanometers have proved to be indispensable in industry for laser marking systems for everything from laser etching hand tools, containers, and parts to batch-coding semiconductor wafers in semiconductor device fabrication. They typically control X and Y directions on Nd:YAG and CO2 laser markers to control the position of the infrared power laser spot. Laser ablation, laser beam machining and wafer dicing are all industrial areas where high-speed mirror galvanometers can be found. Closer to home, mirror galvanometers are located in most retail outlets, warehouses, and parcel delivery service providers, in the form of barcode readers for Universal Product Codes and other forms of barcodes.

References

  1. ^ Munro, John (July, 1997). Heroes of the Telegraph. Project Gutenberg. http://onlinebooks.library.upenn.edu/webbin/gutbook/lookup?num=979. 


2. Nature 22, 246-247 (15 July 1880). Marcel Deprez's Galvanometer for Strong Currents


External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • mirror galvanometer — Reflecting Re*flect ing, a. 1. Throwing back light, heat, etc., as a mirror or other surface. [1913 Webster] 2. Given to reflection or serious consideration; reflective; contemplative; as, a reflecting mind. [1913 Webster] {Reflecting circle}, an …   The Collaborative International Dictionary of English

  • mirror galvanometer — veidrodinis galvanometras statusas T sritis Standartizacija ir metrologija apibrėžtis Galvanometras, kurio optinis skaitymo įtaisas turi veidrodį. atitikmenys: angl. mirror galvanometer; reflecting galvanometer vok. Reflexgalvanometer, n;… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • mirror galvanometer — veidrodinis galvanometras statusas T sritis fizika atitikmenys: angl. mirror galvanometer; reflecting galvanometer vok. Reflexgalvanometer, n; Reflexionsgalvanometer, n; Spiegelgalvanometer, n rus. зеркальный гальванометр, m pranc. galvanomètre à …   Fizikos terminų žodynas

  • double mirror galvanometer — dviveidrodis galvanometras statusas T sritis Standartizacija ir metrologija apibrėžtis Magnetoelektrinis galvanometras su dviem veidrodžiais. atitikmenys: angl. double mirror galvanometer vok. Doppelspiegelgalvanometer, n rus. двойной зеркальный… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • double mirror galvanometer — dviveidrodis galvanometras statusas T sritis fizika atitikmenys: angl. double mirror galvanometer vok. Doppelspiegelgalvanometer, n rus. двойной зеркальный гальванометр, m pranc. galvanomètre à miroir double, m …   Fizikos terminų žodynas

  • Galvanometer — D Arsonval/Weston galvanometer movement with the moving coil shown in red. A galvanometer is a type of ammeter: an instrument for detecting and measuring electric current. It is an analog electromechanical transducer that produces a rotary… …   Wikipedia

  • galvanometer — /gal veuh nom i teuhr/, n. an instrument for detecting the existence of small electric currents and determining their strength. [1795 1805; GALVANO + METER] * * * Instrument for measuring small electric currents by deflection of a moving coil. A… …   Universalium

  • galvanometer — An instrument for measuring the strength of an electric current. d Arsonval g. a sensitive g. consisting of a moving coil suspended in a permanent magnetic field between delicate metallic wires or ribbons that serve as both torsion …   Medical dictionary

  • Reflecting galvanometer — Reflecting Re*flect ing, a. 1. Throwing back light, heat, etc., as a mirror or other surface. [1913 Webster] 2. Given to reflection or serious consideration; reflective; contemplative; as, a reflecting mind. [1913 Webster] {Reflecting circle}, an …   The Collaborative International Dictionary of English

  • reflecting galvanometer — veidrodinis galvanometras statusas T sritis Standartizacija ir metrologija apibrėžtis Galvanometras, kurio optinis skaitymo įtaisas turi veidrodį. atitikmenys: angl. mirror galvanometer; reflecting galvanometer vok. Reflexgalvanometer, n;… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas