Adriano Garsia


Adriano Garsia

Adriano Mario Garsia (born 1928) is an American mathematician, a leading expert in combinatorics, representation theory, and algebraic geometry, a student of Charles Loewner. He has made many deep contributions to representation theory, symmetric functions and algebraic combinatorics, which exerted a remarkable influence and opened new subfields. Thus, his famous n!-conjecture has resulted in new vistas opening up in representation theory.

He currently ('08) has 29 students and 73 descendants according to the data at the mathematical genealogy project.

He is currently on the faculty of the University of California, San Diego.

Books by A. Garsia

* Garsia, Adriano M. Martingale inequalities: Seminar notes on recent progress. Mathematics Lecture Notes Series. W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973.
* Garsia, Adriano M. Topics in almost everywhere convergence. Lectures in Advanced Mathematics, 4 Markham Publishing Co., Chicago, Ill. 1970
*A. M. Garsia and M. Haiman, "Orbit Harmonics and Graded Representations, Research Monograph" to appear as part of the collection published by the Lab. de. Comb. et Informatique Math'ematique, edited by S. Brlek, U. du Qu'ebec 'a Montr'eal.

External links

*


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Macdonald polynomial — In mathematics, Macdonald polynomials P λ are a two parameter family of orthogonal polynomials indexed by a positive weight λ of a root system, introduced by Ian G. Macdonald (1987). They generalize several other families of orthogonal… …   Wikipedia

  • Géométrie différentielle des surfaces — En mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies… …   Wikipédia en Français

  • N!-conjecture — In mathematics, the n! conjecture is the conjecture that the dimension of a certain bi graded module of diagonal harmonics is n!. It was made by A. M. Garsia and proved by M. Haiman. It implies Macdonald s positivity conjecture about his… …   Wikipedia

  • n! conjecture — In mathematics, the n! conjecture is the conjecture that the dimension of a certain bi graded module of diagonal harmonics is n!. It was made by A. M. Garsia and M. Haiman and later proved by M. Haiman. It implies Macdonald s positivity… …   Wikipedia

  • Macdonald polynomials — In mathematics, Macdonald polynomials Pλ(x; t,q) are a family of orthogonal polynomials in several variables, introduced by Macdonald (1987). Macdonald originally associated his polynomials with weights λ of finite root systems and used just …   Wikipedia

  • Charles Loewner — in 63 Born 29 May 1893(1893 05 29) Lány …   Wikipedia

  • Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… …   Wikipedia

  • Charles Loewner — Charles Löwner, eigentlich Karel Löwner, deutsch auch Karl Löwner, (* 29. Mai 1893 in Lany; † 8. Januar 1968 in Stanford (Kalifornien)) war ein tschechisch US amerikanischer Mathematiker, der sich vor allem mit Funktionentheorie und Analysis… …   Deutsch Wikipedia

  • Loewner — Charles Löwner, eigentlich Karel Löwner, deutsch auch Karl Löwner, (* 29. Mai 1893 in Lany; † 8. Januar 1968 in Stanford (Kalifornien)) war ein tschechisch US amerikanischer Mathematiker, der sich vor allem mit Funktionentheorie und Analysis… …   Deutsch Wikipedia

  • Pisot-Zahl — Eine Pisot Zahl oder Pisot–Vijayaraghavan Zahl, benannt nach Charles Pisot (1910–1984) und Tirukkannapuram Vijayaraghavan (1902–1955), ist eine ganze algebraische Zahl α > 1, für die gilt, dass ihre Konjugierten α2, …, αd ohne α selbst (also… …   Deutsch Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.