Augmentation ideal

﻿
Augmentation ideal

In mathematics, an augmentation ideal is an ideal in any group ring. If "G" is a group and "R" a commutative ring, there is a ring homomorphism $varepsilon$, called the augmentation map, from the group ring

: $R \left[G\right]$

to "R", defined by taking a sum

: $sum r_i g_i$

to

: $sum r_i$

Here "r""i" is an element of "R" and "g""i" an element of "G". The sums are finite, by definition of the group ring. In less formal terms,

: $varepsilon\left(g\right)$

is defined as 1"R" whatever the element "g" in "G", and $varepsilon$ is then extended to a homomorphism of "R"-modules in the obvious way. The augmentation ideal is the kernel of $varepsilon$, and is therefore a two-sided ideal in "R" ["G"] . It is generated by the differences

: $g - g\text{'}$

of group elements.

Furthermore it is also generated by

: $g - 1 , 1 eq gin G$

which is a basis for the augmentation ideal as a free "R" module.

For "R" and "G" as above, the group ring "R" ["G"] is an example of an "augmented" "R"-algebra. Such an algebra comes equipped with a ring homomorphism to "R". The kernel of this homomorphism is the augmentation ideal of the algebra.

Another class of examples of augmentation ideal can be the kernel of the counit $varepsilon$ of any Hopf algebra.

The augmentation ideal plays a basic role in group cohomology, amongst other applications.

References

*

Wikimedia Foundation. 2010.

Look at other dictionaries:

• Augment — or augmentation may refer to:*Augment (linguistics), a syllable added to the beginning of the word in certain Indo European languages*Augmentation (heraldry), heraldic modifications *Augmentation (music), the musical technique of lengthening or… …   Wikipedia

• Monoid ring — In abstract algebra, a monoid ring is a new ring constructed from some other ring and a monoid. Definition Let R be a ring and G be a monoid. Consider all the functions φ  : G → R such that the set {g: φ(g) ≠ 0} is finite. Let all such… …   Wikipedia

• Kurosh problem — In mathematics, the Kurosh problem is one general problem, and several more special questions, in ring theory. The general problem is known to have a negative solution, since one of the special cases has been shown to have counterexamples. These… …   Wikipedia

• Atiyah–Segal completion theorem — The Atiyah Segal completion theorem is a theorem in mathematics about equivariant K theory in homotopy theory. Let G be a compact Lie group and let X be a G CW complex. The theorem then states, that the projection map :picolon X imes EG o X… …   Wikipedia

• List of mathematics articles (A) — NOTOC A A Beautiful Mind A Beautiful Mind (book) A Beautiful Mind (film) A Brief History of Time (film) A Course of Pure Mathematics A curious identity involving binomial coefficients A derivation of the discrete Fourier transform A equivalence A …   Wikipedia

• Segal conjecture — Segal s Burnside ring conjecture, or, more briefly, the Segal conjecture, is a theorem in homotopy theory, a branch of mathematics. The theorem relates the Burnside ring of a finite group G to the stable cohomotopy of the classifying space BG .… …   Wikipedia

• Butcher group — In mathematics, the Butcher group, named after the New Zealand mathematician John C. Butcher by Hairer Wanner (1974), is an infinite dimensional group first introduced in numerical analysis to study solutions of non linear ordinary differential… …   Wikipedia

• POLOGNE — Située dans la vaste plaine de l’Europe septentrionale où les limites naturelles ne sont guère constituées que par des cours d’eau qui coule vers le nord, la Pologne a été jusqu’à nos jours un lieu de passage, attirant les grandes migrations… …   Encyclopédie Universelle

• Optimisation des performances des architectures multi-cœurs — Un microprocesseur multi cœur (multi core en anglais) est un processeur possédant plusieurs cœurs physiques. Depuis l’arrivée des premiers microprocesseurs double cœurs en 2005, le nombre de cœurs ne cesse d’augmenter dans l’objectif d’améliorer… …   Wikipédia en Français

• Antiquite tardive — Antiquité tardive Assemblée des Dieux. Illustration du codex Vergilius romanus, folio 234, Ve ou VIe siècle, Bibliothèque apostolique vaticane L’expression Antiquité tardive est …   Wikipédia en Français