In mathematics, the resultant of two monic polynomials P and Q over a field k is defined as the product

:mathrm{res}(P,Q) = prod_{(x,y):,P(x)=0,, Q(y)=0} (x-y),,

of the differences of their roots, where x and y take on values in the algebraic closure of k. For non-monic polynomials with leading coefficients p and q, respectively, the above product is multiplied by

:p^{deg Q} q^{deg P}.,


* The resultant is the determinant of the Sylvester matrix (and of the Bezout matrix).

* When Q is separable, the above product can be rewritten to:mathrm{res}(P,Q) = prod_{P(x)=0} Q(x),:and this expression remains unchanged if Q is reduced modulo P. Note that, when non-monic, this includes the factor q^{deg P} but still needs the factor p^{deg Q}.

* Let P' = P mod Q. The above idea can be continued by swapping the roles of P' and Q. However, P' has a set of roots different from that of P. This can be resolved by writing prod_{Q(y)=0} P'(y), as a determinant again, where P' has leading zero coefficients. This determinant can now be simplified by iterative expansion with respect to the column, where only the leading coefficient q of Q appears.:mathrm{res}(P,Q) = q^{deg P - deg P'} cdot mathrm{res}(P',Q): Continuing this procedure ends up in a variant of the Euclidean algorithm. This procedure needs quadratic runtime.


* mathrm{res}(P,Q) = (-1)^{deg P cdot deg Q} cdot mathrm{res}(Q,P)
* mathrm{res}(Pcdot R,Q) = mathrm{res}(P,Q) cdot mathrm{res}(R,Q)
* If P' = P + R*Q and deg P' = deg P, then mathrm{res}(P,Q) = mathrm{res}(P',Q)
* If X, Y, P, Q have the same degree and X = a_{00}cdot P + a_{01}cdot Q, Y = a_{10}cdot P + a_{11}cdot Q,:then mathrm{res}(X,Y) = det{egin{pmatrix} a_{00} & a_{01} \ a_{10} & a_{11} end{pmatrix^{deg P} cdot mathrm{res}(P,Q)
* mathrm{res}(P_-,Q) = mathrm{res}(Q_-,P) where P_-(z) = P(-z)


* The resultant of a polynomial and its derivative is related to the discriminant.

* Resultants can be used in algebraic geometry to determine intersections. For example, let :f(x,y)=0 :and :g(x,y)=0 :define algebraic curves in mathbb{A}^2_k. If f and g are viewed as polynomials in x with coefficients in k(y), then the resultant of f and g gives a polynomial in y whose roots are the y-coordinates of the intersection of the curves.

* In Galois theory, resultants can be used to compute norms.

* In computer algebra, the resultant is a tool that can be used to analyze modular images of the greatest common divisor of integer polynomials where the coefficients are taken modulo some prime number p. The resultant of two polynomials is frequently computed in the Lazard-Rioboo-Trager method of finding the integral of a ratio of polynomials.

* In wavelet theory, the resultant is closely related to the determinant of the transfer matrix of a refinable function.

See also

Elimination theory


* [ Weisstein, Eric W. "Resultant." From MathWorld--A Wolfram Web Resource.]

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Resultant — Résultant En mathématiques, le résultant est une notion qui s applique à deux polynômes. Elle est utilisée en théorie de Galois et en théorie algébrique des nombres. Le résultant de deux polynômes est un scalaire qui permet de vérifier s ils… …   Wikipédia en Français

  • résultant — résultant, ante [ rezyltɑ̃, ɑ̃t ] adj. • XVIe; de résulter ♦ Vieilli Qui résulte de qqch. ⇒ consécutif. « La confusion résultante d une théorie et d une pratique contradictoires » (Chateaubriand). ♢ Mod. Mus. Son résultant, correspondant à deux… …   Encyclopédie Universelle

  • résultant — résultant, ante (rè zul tan, tan t ) adj. 1°   Qui résulte. Le bien résultant du mal.    Terme de procédure. Les cas résultants du procès. 2°   Terme de mécanique. Force résultante, mouvement résultant, force, mouvement qui provient de la… …   Dictionnaire de la Langue Française d'Émile Littré

  • Resultant — Re*sult ant, a. [L. resultans, p. pr. : cf. F. r[ e]sultant.] Resulting or issuing from a combination; existing or following as a result or consequence. [1913 Webster] {Resultant force} or {Resultant motion} (Mech.), a force which is the result… …   The Collaborative International Dictionary of English

  • Resultant — Re*sult ant, n. That which results. Specifically: (a) (Mech.) A reultant force or motion. (b) (Math.) An eliminant. [1913 Webster] The resultant of homogeneous general functions of n variables is that function of their coefficients which, equaled …   The Collaborative International Dictionary of English

  • Resultant —         (англ.) см. Emergent. Философский энциклопедический словарь. М.: Советская энциклопедия. Гл. редакция: Л. Ф. Ильичёв, П. Н. Федосеев, С. М. Ковалёв, В. Г. Панов. 1983 …   Философская энциклопедия

  • resultant — index amount (result), ancillary (subsidiary), consequential (deducible), constructive (creative) …   Law dictionary

  • resultant — early 15c. (n.); 1610s (adj.); from L. resultantem, prp. of resultare (see RESULT (Cf. result)) …   Etymology dictionary

  • resultant — Resultant, [result]ante. adj. v. Qui resulte. Il ne se dit guere qu en termes de pratique. Les cas resultants du procez. les preuves resultantes …   Dictionnaire de l'Académie française

  • resultant — ► ADJECTIVE ▪ occurring or produced as a result …   English terms dictionary

  • resultant — [ri zult′ nt] adj. [L resultans, prp.] 1. that results; following as a consequence 2. resulting from two or more forces or agents acting together n. 1. something that results; result 2. Physics a force, velocity, etc. with an effect equal to that …   English World dictionary