Tsai-Wu failure criterion

Tsai-Wu failure criterion

The Tsai-Wu failure criterion [Tsai, S. W. and Wu, E. M. (1971). A general theory of strength for anisotropic materials. Journal of Composite Materials. vol. 5, pp. 58-80.] is a phenomenological failure theory which is widely used for anisotropic composite materials which have different strengths in tension and compression. This failure criterion is a specialization of the general quadratic failure criterion proposed by Gol'denblat and Kopnov [Gol'denblat, I. and Kopnov, V. A. (1966). Strength of glass reinforced plastic in the complex stress state. Polymer Mechanics, vol. 1, pp. 54-60. (Russian: Mechanika Polimerov, vol. 1, pp. 70-78. 1965)] and can be expressed in the form: F_i~sigma_i + F_{ij}~sigma_i~sigma_j le 1 where i,j=1dots 6 and repeated indices indicate summation, and F_i, F_{ij} are experimentally determined material strength parameters. The stresses sigma_i are expressed in Voigt notation. If the failure surface is to be closed and convex, the interaction terms F_{ij} must satisfy: F_{ii}F_{jj} - F_{ij}^2 ge 0 which implies that all the F_{ii} terms must be positive.

Tsai-Wu failure criterion for orthotropic materials

For orthotropic materials with three planes of symmetry oriented with the coordinate directions, if we assume that F_{ij} = F_{ji} and that there is no coupling between the normal and shear stress terms (and between the shear terms), the general form of the Tsai-Wu failure criterion reduces to: egin{align} F_1sigma_1 + & F_2sigma_2 + F_3sigma_3 + F_4sigma_4 + F_5sigma_5 + F_6sigma_6\ & + F_{11}sigma_1^2 + F_{22}sigma_2^2 + F_{33}sigma_3^2 + F_{44}sigma_4^2 + F_{55}sigma_{5}^2 + F_{66}sigma_6^2 \ & qquad + 2F_{12}sigma_1sigma_2 + 2F_{13}sigma_1sigma_3 + 2F_{23}sigma_2sigma_3 le 1 end{align} Let the failure strength in uniaxial tension and compression in the three directions of anisotropy be sigma_{1t},sigma_{1c},sigma_{2t},sigma_{2c},sigma_{3t},sigma_{3c}. Also, let us assume that the shear strengths in the three planes of symmetry are au_{23}, au_{12}, au_{31} (and have the same magnitude on a plane even if the signs are different). Then the coefficients of the orthotropic Tsai-Wu failure criterion are: egin{align} F_1 = & cfrac{1}{sigma_{1t-cfrac{1}{sigma_{1c ~;~~ F_2 = cfrac{1}{sigma_{2t-cfrac{1}{sigma_{2c ~;~~ F_3 = cfrac{1}{sigma_{3t-cfrac{1}{sigma_{3c ~;~~ F_4 = F_5 = F_6 = 0 \ F_{11} = & cfrac{1}{sigma_{1c}sigma_{1t ~;~~ F_{22} = cfrac{1}{sigma_{2c}sigma_{2t ~;~~ F_{33} = cfrac{1}{sigma_{3c}sigma_{3t ~;~~ F_{44} = cfrac{1}{ au_{23}^2} ~;~~ F_{55} = cfrac{1}{ au_{31}^2} ~;~~ F_{66} = cfrac{1}{ au_{12}^2} \ end{align} The coefficients F_{12},F_{13},F_{23} can be determined using equibiaxial tests. If the failure strengths in equibiaxial tension are sigma_1=sigma_2=sigma_{b12}, sigma_1=sigma_3=sigma_{b13}, sigma_2=sigma_3=sigma_{b23} then: egin{align} F_{12} &= cfrac{1}{2sigma_{b12}^2}left [1-sigma_{b12}(F_1+F_2)-sigma_{b12}^2(F_{11}+F_{22}) ight] \ F_{13} &= cfrac{1}{2sigma_{b13}^2}left [1-sigma_{b13}(F_1+F_3)-sigma_{b13}^2(F_{11}+F_{33}) ight] \ F_{23} &= cfrac{1}{2sigma_{b23}^2}left [1-sigma_{b23}(F_2+F_3)-sigma_{b23}^2(F_{22}+F_{33}) ight] end{align} The near impossibility of performing these equibiaxial tests has led to there being a severe lack of experimental data on the parameters F_{12}, F_{13}, F_{23} .

It can be shown that the Tsai-Wu criterion is a particular case of the generalized Hill yield criterion [Abrate, S. (2008). Criteria for yielding or failure of cellular materials Journal of Sandwich Structures and Materials, vol. 10, pp. 5-51.] .

Tsai-Wu failure criterion for transversely isotropic materials

For a transversely isotropic material, if the plane of isotropy is 1-2, then: F_1=F_2 ~;~~ F_4=F_5=F_6=0 ~;~~ F_{11}=F_{22} ~;~~ F_{44}=F_{55} ~;~~ F_{13}=F_{23} ~. Then the Tsai-Wu failure criterion reduces to: egin{align} F_2(sigma_1 + sigma_2) & + F_3sigma_3 + F_{22}(sigma_1^2 + sigma_2^2) + F_{33}sigma_3^2 + F_{44}(sigma_4^2 + sigma_{5}^2) + F_{66}sigma_6^2 \ & qquad + 2F_{12}sigma_1sigma_2 + 2F_{23}(sigma_1+sigma_2)sigma_3 le 1 end{align} where F_{66} = 2(F_{11}-F_{12}) . This theory is applicable to a unidirectional composite lamina where the fiber direction is in the '3'-direction.

In order to maintain closed and ellipsoidal failure surfaces for all stress states, Tsai and Wu also proposed stability conditions which take the following form for transversely isotropic materials: F_{22}~F_{33} - F_{23}^2 ge 0 ~;~~ F_{11}^2-F_{12}^2 ge 0 ~.

Tsai-Wu failure criterion in plane stress

For the case of plane stress with sigma_1 = sigma_5 = sigma_6 = 0 , the Tsai-Wu failure failure criterion reduces to: F_2sigma_2 + F_3sigma_3 + F_{22}sigma_2^2 + F_{33}sigma_3^2 + F_{44}sigma_4^2 + 2F_{23}sigma_2sigma_3 le 1 The strengths in the expressions for F_i, F_{ij} may be interpreted, in the case of a lamina, assigma_{1c} = transverse compressive strength, sigma_{1t} = transverse tensile strength, sigma_{3c} = longitudinal compressive strength, sigma_{3t} = longitudinal strength, au_{23} = longitudinal shear strength, au_{12} = transverse shear strength.

Tsai-Wu criterion for foams

The Tsai-Wu criterion for closed cell PVC foams under plane strain conditions may be expressed as: F_2sigma_2 + F_3sigma_3 + F_{22}sigma_2^2 + F_{33}sigma_3^2 + 2F_{23}sigma_2sigma_3 = 1 - k^2 where: F_{23} = - cfrac{1}{2}sqrt{F_{22} F_{33 ~;~~ k = cfrac{sigma_4}{ au_{23 ~. For Divinyl H250 PVC foam (density 250 kg/cu.m.), the values of the strengths are sigma_{2c}=4.6MPa, sigma_{2t}=7.3MPa, sigma_{3c}=6.3MPa, sigma_{3t}=10MPa [Gdoutos, E. E., Daniel, I. M. and Wang, K-A. (2001). Multiaxial characterization and modeling of a PVC cellular foam. Journal of Thermoplastic Composite Materials, vol.14, pp. 365-373.] .

For aluminum foams in plane stress, a simplified form of the Tsai-Wu criterion may be used if we assume that the tensile and compressive failure strengths are the same and that there are no shear effects on the failure strength. This criterion may be written as [Duyoyo, M. and Wierzbicki, T. (2003). Experimental studies on the yield behavior of ductile and brittle aluminum foams. International Journal of Plasticity, vol. 19, no. 8, pp. 1195-1214.] : 3~ ilde{J}_2 + (eta^2 - 1)~ ilde{I}_1^2 = eta^2 where: ilde{J}_2 := frac{1}{3}left(cfrac{sigma_1^2}{sigma_{1c}^2} - cfrac{sigma_1sigma_2}{sigma_{1c}sigma_{2c + cfrac{sigma_2^2}{sigma_{2c}^2} ight) ~;~~ ilde{I}_1 := cfrac{sigma_1}{sigma_{1c + cfrac{sigma_2}{sigma_{2c

Tsai-Wu criterion for bone

The Tsai-Wu failure criterion has also been applied to trabecular bone/cancellous bone [Keaveny, T. M., Wachtel, E. F., Zadesky, S. P., Arramon, Y. P. (1999). Application of the Tsai–Wu quadratic multiaxial failure criterion to bovine trabecular bone. ASME Journal of Biomechanical Engineering, vol. 121, no. 1, pp. 99-107.] with varying degrees of success. The quantity F_{12} has been shown to have a nonlinear dependence on the density of the bone.


See also

*Failure theory (material)
*Yield (engineering)

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Failure theory (material) — v · d · e Materials failure modes Buckling · Corro …   Wikipedia

  • Micro-Mechanics of Failure — Figure 1. Hierarchy of micromechanics based analysis procedure for composite structures. Micro Mechanics of Failure (MMF) is a newly proposed methodology, providing a more logical explanation of failure mechanism of continuous f …   Wikipedia

  • performing arts — arts or skills that require public performance, as acting, singing, or dancing. [1945 50] * * * ▪ 2009 Introduction Music Classical.       The last vestiges of the Cold War seemed to thaw for a moment on Feb. 26, 2008, when the unfamiliar strains …   Universalium

  • Tea — For other uses, see Tea (disambiguation). Tea Longjing tea being infused in a glass …   Wikipedia

  • Schizophrenia — MeshName = Schizophrenia MeshNumber = F03.700.750 Schizophrenia (pron en|ˌskɪtsəˈfriːniə), from the Greek roots schizein (σχίζειν, to split ) and phrēn , phren (φρήν, φρεν , mind ) is a psychiatric diagnosis that describes a mental disorder… …   Wikipedia

  • Dissociative identity disorder — Not to be confused with Dissocial personality disorder. Split personality redirects here. For other uses, see Split personality (disambiguation). Dissociative Identity Disorder Classification and external resources ICD 10 F44.8 …   Wikipedia

  • Шизофрения — У этого термина существуют и другие значения, см. Шизофрения (значения). Эта статья  о психотическом расстройстве (или группе расстройств). О его стёртых формах см. шизотипическое расстройство; о расстройстве личности… …   Википедия

  • Шизофреник — Шизофрения Эйген Блейлер (1857–1939) впервые использовал термин «шизофрения» в 1908 г. МКБ 10 F20. МКБ 9 …   Википедия