- nonvanishing
- adjective Date: 1907 not zero or becoming zero

*New Collegiate Dictionary.
2001.*

- nonvanishing
- adjective Date: 1907 not zero or becoming zero

*New Collegiate Dictionary.
2001.*

**nonvanishing**— adj. * * * … Universalium**nonvanishing**— adjective (of a quantity) that is nonzero at all points in a space … Wiktionary**nonvanishing**— non·vanishing … English syllables**nonvanishing**— ˌ adjective : not zero or becoming zero * * * adj … Useful english dictionary**Pp-wave spacetime**— In general relativity, the pp wave spacetimes, or pp waves for short, are an important family of exact solutions of Einstein s field equation. These solutions model radiation moving at the speed of light. This radiation may consist of:*… … Wikipedia**Dirac bracket**— The Dirac bracket is a generalization of the Poisson bracket developed by Paul Dirac to correctly treat systems with second class constraints in Hamiltonian mechanics and canonical quantization. It is an important part of Dirac s development of… … Wikipedia**3-sphere**— Stereographic projection of the hypersphere s parallels (red), meridians (blue) and hypermeridians (green). Because this projection is conformal, the curves intersect each other orthogonally (in the yellow points) as in 4D. All curves are circles … Wikipedia**Goldstone boson**— In particle and condensed matter physics, Goldstone bosons or Nambu–Goldstone bosons are bosons that appear necessarily in models exhibiting spontaneous breakdown of continuous symmetries (cf. spontaneously broken symmetry). They were discovered… … Wikipedia**Monochromatic electromagnetic plane wave**— In general relativity, the monochromatic electromagnetic plane wave spacetime is the analog of the monochromatic plane waves known from Maxwell s theory. The precise definition of the solution is a bit complicated, but very instructive. Any exact … Wikipedia**Congruence (manifolds)**— In the theory of smooth manifolds, a congruence is the set of integral curves defined by a nonvanishing vector field defined on the manifold. Congruences are an important concept in general relativity, and are also important in parts of… … Wikipedia