adjective Date: 1952 being a one-to-one mathematical function

New Collegiate Dictionary. 2001.

Look at other dictionaries:

  • injective — ● injectif, injective adjectif Application injective de A dans B, application pour laquelle tout élément de B est l image d au plus un élément de A. Consonne injective ou injective (nom féminin), consonne occlusive implosive (ou inspiratoire)… …   Encyclopédie Universelle

  • Injective — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sur les autres projets Wikimedia : « Injective », sur le Wiktionnaire (dictionnaire universel) Une consonne injective est une consonne… …   Wikipédia en Français

  • injective — См. iniettiva …   Пятиязычный словарь лингвистических терминов

  • injective — adjective /ɪnˈdʒɛktɪv/ Of, relating to, or being an injection: such that each element of the image (or range) is associated with at most one element of the preimage (or domain); inverse deterministic. Syn: one to one See Also …   Wiktionary

  • injective — in·jec·tive …   English syllables

  • injective — ə̇nˈjektiv, ēv adjective Etymology: inject + ive : being a one to one mathematical function …   Useful english dictionary

  • Injective function — Injective redirects here. For injective modules, see Injective module. An injective function (is not a bijection) …   Wikipedia

  • Injective module — In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z module Q of all rational numbers. Specifically, if Q is a submodule of some… …   Wikipedia

  • Injective hull — This article is about the injective hull of a module in algebra. For injective hulls of metric spaces, also called tight spans, injective envelopes, or hyperconvex hulls, see tight span. In mathematics, especially in the area of abstract algebra… …   Wikipedia

  • Injective object — In mathematics, especially in the field of category theory, the concept of injective object is a generalization of the concept of injective module. This concept is important in homotopy theory and in theory of model categories. The dual notion is …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”