Apparent magnitude
Asteroid 65 Cybele and 2 stars with their magnitudes labeled

The apparent magnitude (m) of a celestial body is a measure of its brightness as seen by an observer on Earth, normalized to the value it would have in the absence of the atmosphere. The brighter the object appears, the lower the value of its magnitude.

## History

Visible to
typical
human eye
Apparent
magnitude
Brightness
relative
to Vega
Number of stars
brighter than
apparent magnitude[1]
Yes −1 250% 1
0 100% 4
1 40% 15
2 16% 48
3 6.3% 171
4 2.5% 513
5 1.0% 1 602
6 0.40% 4 800
No 7 0.16% 14 000
8 0.063% 42 000
9 0.025% 121 000
10 0.010% 340 000

The scale now used to indicate magnitude originates in the Hellenistic practice of dividing stars visible to the naked eye into six magnitudes. The brightest stars were said to be of first magnitude (m = 1), while the faintest were of sixth magnitude (m = 6), the limit of human visual perception (without the aid of a telescope). Each grade of magnitude was considered twice the brightness of the following grade (a logarithmic scale). This somewhat crude method of indicating the brightness of stars was popularized by Ptolemy in his Almagest, and is generally believed to originate with Hipparchus. This original system did not measure the magnitude of the Sun. (For a more detailed discussion of the history of the magnitude system, see Magnitude.)

In 1856, Norman Robert Pogson formalized the system by defining a typical first magnitude star as a star that is 100 times as bright as a typical sixth magnitude star; thus, a first magnitude star is about 2.512 times as bright as a second magnitude star. The fifth root of 100 is known as Pogson's Ratio.[2] Pogson's scale was originally fixed by assigning Polaris a magnitude of 2. Astronomers later discovered that Polaris is slightly variable, so they first switched to Vega as the standard reference star, and then switched to using tabulated zero points[clarification needed] for the measured fluxes.[3] The magnitude depends on the wavelength band (see below).

The modern system is no longer limited to 6 magnitudes or only to visible light. Very bright objects have negative magnitudes. For example, Sirius, the brightest star of the celestial sphere, has an apparent magnitude of –1.4. The modern scale includes the Moon and the Sun. The full Moon has a mean apparent magnitude of –12.74[4] and the Sun has an apparent magnitude of –26.74.[5] The Hubble Space Telescope has located stars with magnitudes of 30 at visible wavelengths and the Keck telescopes have located similarly faint stars in the infrared.

## Table of notable celestial objects

Apparent visual magnitudes of known celestial objects
App. Mag. (V) Celestial object
–38.00 Rigel as seen from 1 astronomical unit. It is seen as a large very bright bluish scorching ball of 35° apparent diameter.
–30.30 Sirius as seen from 1 astronomical unit
–29.30 Sun as seen from Mercury at perihelion
–27.40 Sun as seen from Venus at perihelion
–26.74 Sun[5] (398,359 times brighter than mean full moon)
–25.60 Sun as seen from Mars at aphelion
–23.00 Sun as seen from Jupiter at aphelion
–21.70 Sun as seen from Saturn at aphelion
–20.20 Sun as seen from Uranus at aphelion
–19.30 Sun as seen from Neptune
–18.20 Sun as seen from Pluto at aphelion
–16.70 Sun as seen from Eris at aphelion
–12.92 Maximum brightness of full Moon (mean is –12.74)[4]
–11.20 Sun as seen from Sedna at aphelion
–9.50 Maximum brightness of an Iridium (satellite) flare
–7.50 The SN 1006 supernova of AD 1006, the brightest stellar event in recorded history[6]
–6.50 The total integrated magnitude of the night sky as seen from Earth
–6.00 The Crab Supernova (SN 1054) of AD 1054 (6500 light years away)[7]
–5.9 International Space Station (when the ISS is at its perigee and fully lit by the Sun)[8]
–4.89 Maximum brightness of Venus[9] when illuminated as a crescent
–4.00 Faintest objects observable during the day with naked eye when Sun is high
–3.99 Maximum brightness of Epsilon Canis Majoris, the brightest star of the last and next five million years
–3.82 Minimum brightness of Venus when it is on the far side of the Sun
–2.94 Maximum brightness of Jupiter[10]
–2.91 Maximum brightness of Mars[11]
–2.50 Faintest objects visible during the day with naked eye when Sun is less than 10° above the horizon
–2.50 Minimum brightness of new Moon
–2.45 Maximum brightness of Mercury at superior conjunction (unlike Venus, Mercury is at its brightest when on the far side of the Sun, the reason being their different phase curves)
–1.61 Minimum brightness of Jupiter
–1.47 Brightest star (except for the Sun) at visible wavelengths: Sirius[12]
–0.83 Eta Carinae apparent brightness as a supernova impostor in April 1843
–0.72 Second-brightest star: Canopus[13]
–0.49 Maximum brightness of Saturn at opposition and when the rings are full open (2003, 2018)
–0.27 The total magnitude for the Alpha Centauri AB star system. (Third-brightest star to the naked eye)
–0.04 Fourth-brightest star to the naked eye Arcturus[14]
−0.01 Fourth-brightest individual star visible telescopically in the sky Alpha Centauri A
+0.03 Vega, which was originally chosen as a definition of the zero point[15]
+0.50 Sun as seen from Alpha Centauri
1.47 Minimum brightness of Saturn
1.84 Minimum brightness of Mars
3.03 The SN 1987A supernova in the Large Magellanic Cloud 160,000 light-years away.
3 to 4 Faintest stars visible in an urban neighborhood with naked eye
3.44 The well known Andromeda Galaxy (M31)[16]
4.38 Maximum brightness of Ganymede[17] (moon of Jupiter and the largest moon in the Solar System)
4.50 M41, an open cluster that may have been seen by Aristotle[18]
5.14 Maximum brightness of brightest asteroid Vesta
5.32 Maximum brightness of Uranus[19]
5.72 The spiral galaxy M33, which is used as a test for naked eye seeing under dark skies[20][21]
5.73 Minimum brightness of Mercury
5.8 Peak visual magnitude of gamma ray burst GRB 080319B (the "Clarke Event") seen on Earth on March 19, 2008 from a distance of 7.5 gigalight-years.
5.95 Minimum brightness of Uranus
6.40 Maximum brightness of asteroid Pallas
6.50 Approximate limit of stars observed by a mean naked eye observer under very good conditions. There are about 9,500 stars visible to mag 6.5.[22]
6.73 Maximum brightness of dwarf planet Ceres in the asteroid belt
6.75 Maximum brightness of asteroid Iris
6.90 The spiral galaxy M81 is an extreme naked eye target that pushes human eyesight and the Bortle Dark-Sky Scale to the limit[23]
7 to 8 Extreme naked eye limit with class 1 Bortle Dark-Sky Scale, the darkest skies available on Earth[24]
7.78 Maximum brightness of Neptune[25]
8.02 Minimum brightness of Neptune
8.10 Maximum brightness of Titan (largest moon of Saturn),[26][27] mean opposition magnitude 8.4[28]
9.01 Maximum brightness of asteroid 10 Hygiea[29]
9.50 Faintest objects visible using common 7x50 binoculars under typical conditions[30]
10.20 Maximum brightness of Iapetus[27] (brightest when west of Saturn and takes 40 days to switch sides)
12.91 Brightest quasar 3C 273 (luminosity distance of 2.4 giga-light years)
13.42 Maximum brightness of Triton[28]
13.65 Maximum brightness of Pluto[31] (725 times fainter than magnitude 6.5 naked eye skies)
15.40 Maximum brightness of centaur Chiron[32]
15.55 Maximum brightness of Charon (the large moon of Pluto)
16.80 Current opposition brightness of Makemake[33]
17.27 Current opposition brightness of Haumea[34]
18.70 Current opposition brightness of Eris
20.70 Callirrhoe (small ~8 km satellite of Jupiter)[28]
22.00 Approximate limiting magnitude of a 24" Ritchey-Chrétien telescope with 30 minutes of stacked images (6 subframes at 300s each) using a CCD detector[35]
22.91 Maximum brightness of Pluto's moon Hydra
23.38 Maximum brightness of Pluto's moon Nix
24.80 Amateur picture with greatest magnitude: quasar CFHQS J1641 +3755[36][37]
25.00 Fenrir (small ~4 km satellite of Saturn)[38]
27.00 Faintest objects observable in visible light with 8m ground-based telescopes
28.00 Jupiter if it were located 5000AU from the Sun[39]
28.20 Halley's Comet in 2003 when it was 28AU from the Sun[40]
31.50 Faintest objects observable in visible light with Hubble Space Telescope
35.00 Sedna at aphelion (900 AU)
35.00 LBV 1806-20 is a luminous blue variable star at visible wavelengths
36.00 Faintest objects observable in visible light with E-ELT

The above are only approximate values at visible wavelengths (in reality the values depend on the precise bandpass used) — see airglow for more details of telescope sensitivity.

## Calculations

30 Doradus image taken by ESO's VISTA. This nebula has an apparent magnitude of 8.

As the amount of light received actually depends on the thickness of the Earth's atmosphere in the line of sight to the object, the apparent magnitudes are normalized to the value it would have in the absence of the atmosphere. The dimmer an object appears, the higher its apparent magnitude. Note that brightness varies with distance; an extremely bright object may appear quite dim, if it is far away. Brightness varies inversely with the square of the distance. The absolute magnitude, M, of a celestial body (outside the Solar System) is the apparent magnitude it would have if it were 10 parsecs (~32.6 light years) away; that of a planet (or other Solar System body) is the apparent magnitude it would have if it were 1 astronomical unit away from both the Sun and Earth. The absolute magnitude of the Sun is 4.83 in the V band (yellow) and 5.48 in the B band (blue).[41]

The apparent magnitude, m, in the band, x, can be defined as mx below (noting that $\log_{\sqrt[5]{100}} F = \frac{\log_{10} F }{\log_{10} 100^{1/5}} = 2.5\log_{10} F$)

$m_{x}= -2.5 \log_{10} \left(\frac {F_x}{F_x^0}\right)\,$

where $F_x\!\,$ is the observed flux in the band x, and $F_x^0$ is a reference flux in the same band x, such as the Vega star's for example. See Aller et al. 1982 for the most commonly used system.

Since an increase of 1 in the magnitude scale corresponds to a decrease in brightness by a certain factor, the factor would be $\sqrt[5]{100}$, which is 2.512...

The variation in brightness between two luminous objects can be calculated another way by subtracting the magnitude number of the brighter object from the magnitude number of the fainter object, then using the difference as an exponent for the base number 2.512; that is to say (mfmb = x; and 2.512x = variation in brightness).

### Example 1 - Sun & Moon

What is the ratio in brightness between the Sun and the full moon?

$m_f - m_b = x \!\$

2.512x = variation in brightness

The apparent magnitude of the Sun is -26.74, and the mean apparent magnitude of the full moon is -12.74. The full moon is the fainter of the two objects, while the Sun is the brighter.

Difference in magnitude

$x = m_f - m_b \!\$

$x = (-12.74) - (-26.74) = 14 \!\$

$x = 14 \!\$

Variation in Brightness

$v_b = 2.512^x \!\$

$v_b = 2.512^{14} \!\$

$v_b = 398,359 \!\$

variation in brightness = 398,359

In terms of apparent magnitude, the Sun is about 398,359 times brighter than the full moon.

### Example 2 - Sirius & Polaris

What is the ratio in brightness between Sirius and Polaris?

$m_f - m_b = x \!\$

$2.512^x = \!\$ variation in brightness

The apparent magnitude of Sirius is -1.44, and the apparent magnitude of Polaris is 1.97. Polaris is the fainter of the two stars, while Sirius is the brighter.

Difference in magnitude

$x = m_f - m_b \!\$

$x = 1.97 - (-1.44) = 3.41 \!\$

$x = 3.41 \!\$

Variation in brightness

$v_b = 2.512^x \!\$

$v_b = 2.512^{3.41} \!\$

$v_b = 23.124 \!\$

In terms of apparent magnitude, Sirius is 23.124 times brighter than Polaris the North Star.

The second thing to notice is that the scale is logarithmic: the relative brightness of two objects is determined by the difference of their magnitudes. For example, a difference of 3.2 means that one object is about 19 times as bright as the other, because Pogson's ratio raised to the power 3.2 is 19.054607... A common misconception is that the logarithmic nature of the scale is because the human eye itself has a logarithmic response. In Pogson's time this was thought to be true (see Weber-Fechner law), but it is now believed that the response is a power law (see Stevens' power law).[42]

Magnitude is complicated by the fact that light is not monochromatic. The sensitivity of a light detector varies according to the wavelength of the light, and the way it varies depends on the type of light detector. For this reason, it is necessary to specify how the magnitude is measured for the value to be meaningful. For this purpose the UBV system is widely used, in which the magnitude is measured in three different wavelength bands: U (centred at about 350 nm, in the near ultraviolet), B (about 435 nm, in the blue region) and V (about 555 nm, in the middle of the human visual range in daylight). The V band was chosen for spectral purposes and gives magnitudes closely corresponding to those seen by the light-adapted human eye, and when an apparent magnitude is given without any further qualification, it is usually the V magnitude that is meant, more or less the same as visual magnitude.

Since cooler stars, such as red giants and red dwarfs, emit little energy in the blue and UV regions of the spectrum their power is often under-represented by the UBV scale. Indeed, some L and T class stars have an estimated magnitude of well over 100, since they emit extremely little visible light, but are strongest in infrared.

Measures of magnitude need cautious treatment and it is extremely important to measure like with like. On early 20th century and older orthochromatic (blue-sensitive) photographic film, the relative brightnesses of the blue supergiant Rigel and the red supergiant Betelgeuse irregular variable star (at maximum) are reversed compared to what our eyes see since this archaic film is more sensitive to blue light than it is to red light. Magnitudes obtained from this method are known as photographic magnitudes, and are now considered obsolete.

For objects within our Galaxy with a given absolute magnitude, 5 is added to the apparent magnitude for every tenfold increase in the distance to the object. This relationship does not apply for objects at very great distances (far beyond our galaxy), since a correction for General Relativity must then be taken into account due to the non-Euclidean nature of space.

For planets and other Solar System bodies the apparent magnitude is derived from its phase curve and the distances to the Sun and observer.

## References

1. ^ "Magnitude". National Solar Observatory—Sacramento Peak. Archived from the original on 2008-02-06. Retrieved 2006-08-23.
2. ^ Magnitudes of Thirty-six of the Minor Planets for the first day of each month of the year 1857, N. Pogson, MNRAS Vol. 17, p. 12 (1856)
3. ^ Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology - New Series " Gruppe/Group 6 Astronomy and Astrophysics " Volume 2 Schaifers/Voigt: Astronomy and Astrophysics / Astronomie und Astrophysik " Stars and Star Clusters / Sterne und Sternhaufen L. H. Aller et al., ISBN 3-540-10976-5 (1982)
4. ^ a b Williams, Dr. David R. (2010-02-02). "Moon Fact Sheet". NASA (National Space Science Data Center). Retrieved 2010-04-09.
5. ^ a b Williams, Dr. David R. (2004-09-01). "Sun Fact Sheet". NASA (National Space Science Data Center). Retrieved 2010-07-03.
6. ^ Winkler, P. Frank; Gupta, Gaurav; Long, Knox S. (2003). "The SN 1006 Remnant: Optical Proper Motions, Deep Imaging, Distance, and Brightness at Maximum". The Astrophysical Journal 585: 324–335. arXiv:astro-ph/0208415. Bibcode 2003ApJ...585..324W. doi:10.1086/345985.
7. ^ Supernova 1054 - Creation of the Crab Nebula
8. ^ "ISS Information - Heavens-above.com". Heavens-above. Retrieved 2007-12-22.
9. ^ "HORIZONS Web-Interface for Venus (Major Body=299)". JPL Horizons On-Line Ephemeris System. 2006-Feb-27 (GEOPHYSICAL DATA). Retrieved 2010-11-28.  (Using JPL Horizons you can see that on 2013-Dec-08 Venus will have an apmag of -4.89)
10. ^ Williams, David R. (2007-11-02). "Jupiter Fact Sheet". National Space Science Data Center. NASA. Retrieved 2010-06-25.
11. ^ Williams, David R. (2007-11-29). "Mars Fact Sheet". National Space Science Data Center. NASA. Retrieved 2010-06-25.
12. ^ "Sirius". SIMBAD Astronomical Database. Retrieved 2010-06-26.
13. ^ "Canopus". SIMBAD Astronomical Database. Retrieved 2010-06-26.
14. ^ "Arcturus". SIMBAD Astronomical Database. Retrieved 2010-06-26.
15. ^ "Vega". SIMBAD Astronomical Database. Retrieved 2010-04-14.
17. ^ Yeomans and Chamberlin. "Horizon Online Ephemeris System for Ganymede (Major Body 503)". California Institute of Technology, Jet Propulsion Laboratory. Retrieved 2010-04-14.  (4.38 on 1951-Oct-03)
18. ^ "M41 possibly recorded by Aristotle". SEDS (Students for the Exploration and Development of Space). 2006-07-28. Retrieved 2009-11-29.
19. ^ Williams, David R. (2005-01-31). "Uranus Fact Sheet". National Space Science Data Center. NASA. Retrieved 2010-06-25.
21. ^ Jerry Lodriguss (1993). "M33 (Triangulum Galaxy)". Retrieved 2009-11-27.  (shows b mag not v mag)
22. ^ "Vmag<6.5". SIMBAD Astronomical Database. Retrieved 2010-06-25.
23. ^ "Messier 81". SEDS (Students for the Exploration and Development of Space). 2007-09-02. Retrieved 2009-11-28.
24. ^ John E. Bortle (February 2001). "The Bortle Dark-Sky Scale". Sky & Telescope. Retrieved 2009-11-18.
25. ^ Williams, David R. (2007-11-29). "Neptune Fact Sheet". National Space Science Data Center. NASA. Retrieved 2010-06-25.
26. ^ Yeomans and Chamberlin. "Horizon Online Ephemeris System for Titan (Major Body 606)". California Institute of Technology, Jet Propulsion Laboratory. Retrieved 2010-06-28.  (8.10 on 2003-Dec-30)
27. ^ a b "Classic Satellites of the Solar System". Observatorio ARVAL. Retrieved 2010-06-25.
28. ^ a b c "Planetary Satellite Physical Parameters". JPL (Solar System Dynamics). 2009-04-03. Retrieved 2009-07-25.
29. ^ "AstDys (10) Hygiea Ephemerides". Department of Mathematics, University of Pisa, Italy. Retrieved 2010-06-26.
30. ^ Ed Zarenski (2004). "Limiting Magnitude in Binoculars". Cloudy Nights. Retrieved 2011-05-06.
31. ^ Williams, David R. (2006-09-07). "Pluto Fact Sheet". National Space Science Data Center. NASA. Retrieved 2010-06-26.
32. ^ "AstDys (2060) Chiron Ephemerides". Department of Mathematics, University of Pisa, Italy. Retrieved 2010-06-26.
33. ^ "AstDys (136472) Makemake Ephemerides". Department of Mathematics, University of Pisa, Italy. Retrieved 2010-06-26.
34. ^ "AstDys (136108) Haumea Ephemerides". Department of Mathematics, University of Pisa, Italy. Retrieved 2010-06-26.
35. ^ Steve Cullen (sgcullen) (2009-10-05). "17 New Asteroids Found by LightBuckets". LightBuckets. Retrieved 2009-11-15.
36. ^ Cooperation with Ken Crawford
37. ^
38. ^ Scott S. Sheppard. "Saturn's Known Satellites". Carnegie Institution (Department of Terrestrial Magnetism). Retrieved 2010-06-28.
39. ^ Magnitude difference is 2.512*log10[(5000/5)^2 X (4999/4)^2] ≈ 30.6, so Jupiter is 30.6 mag fainter at 5000 AU
40. ^ "New Image of Comet Halley in the Cold". ESO. 2003-09-01. Retrieved 2009-02-22.
41. ^ Prof. Aaron Evans. "Some Useful Astronomical Definitions". Stony Brook Astronomy Program. Retrieved 2009-07-12.
42. ^ E. Schulman and C. V. Cox (1997). "Misconceptions About Astronomical Magnitudes". American Journal of Physics 65: 1003. Bibcode 1997AmJPh..65.1003S. doi:10.1119/1.18714.

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Apparent magnitude — Magnitude Mag ni*tude, n. [L. magnitudo, from magnus great. See {Master}, and cf. {Maxim}.] 1. Extent of dimensions; size; applied to things that have length, breadth, and thickness. [1913 Webster] Conceive those particles of bodies to be so… …   The Collaborative International Dictionary of English

• apparent magnitude — Magnitude Mag ni*tude, n. [L. magnitudo, from magnus great. See {Master}, and cf. {Maxim}.] 1. Extent of dimensions; size; applied to things that have length, breadth, and thickness. [1913 Webster] Conceive those particles of bodies to be so… …   The Collaborative International Dictionary of English

• apparent magnitude — n. MAGNITUDE (sense 3) …   English World dictionary

• apparent magnitude — noun : the observed or apparent brightness of a celestial body expressed on the magnitude scale and varying in accordance with the spectral sensitivity of the means of observing (as the eye, a photographic material, or an instrument) * * *… …   Useful english dictionary

• apparent magnitude — Astron. the magnitude of a star as it appears to an observer on the earth. Cf. absolute magnitude. [1870 75] * * * …   Universalium

• apparent magnitude — noun a numerical measure of the brightness of a star, planet etc.; a decrease of 1 unit represents an increase in the light received by a factor of 2.512 See Also …   Wiktionary

• apparent magnitude — noun Date: 1785 the luminosity of a celestial body (as a star) as observed from the earth compare absolute magnitude …   New Collegiate Dictionary

• apparent magnitude — noun Astronomy the magnitude of a celestial object as it is measured from the earth …   English new terms dictionary

• Apparent Magnitude —    The observed brightness of a star …   The writer's dictionary of science fiction, fantasy, horror and mythology

• apparent diameter — Magnitude Mag ni*tude, n. [L. magnitudo, from magnus great. See {Master}, and cf. {Maxim}.] 1. Extent of dimensions; size; applied to things that have length, breadth, and thickness. [1913 Webster] Conceive those particles of bodies to be so… …   The Collaborative International Dictionary of English