Augustin Louis Cauchy

Infobox_Scientist
name = Augustin Louis Cauchy



image_width = 200px
caption = Augustin Louis Cauchy
birth_date = birth date|1789|8|21|df=y
birth_place = Paris, France
death_date = death date and age|1857|5|23|1789|8|21|df=y
death_place = Sceaux, France
residence =
nationality =
field = Calculus
Complex analysis
work_institutions = École Centrale du Panthéon
École Nationale des Ponts et Chaussées
École polytechnique
alma_mater = École Nationale des Ponts et Chaussées
doctoral_advisor =
doctoral_students =
known_for = Cauchy integral theorem
prizes =
religion = Catholic
footnotes =

Augustin Louis Cauchy (21 August 1789 – 23 May 1857; IPA| [o.gysˈtɛ̃ lwi koˈʃi] ) was a French mathematician. He started the project of formulating and proving the theorems of calculus in a rigorous manner and was thus an early pioneer of analysis. He also gave several important theorems in complex analysis and initiated the study of permutation groups. A profound mathematician, through his perspicuous and rigorous methods Cauchy exercised a great influence over his contemporaries and successors. His writings cover the entire range of mathematics and mathematical physics.

Biography

Cauchy received his early education from his father Louis François Cauchy (1760–1848), who held several minor public appointments and counted Lagrange and Laplace among his friends. Cauchy entered l'École Centrale du Panthéon in 1802, proceeded to the École Polytechnique in 1805, and to l'École Nationale des Ponts et Chaussées in 1807, afterwards adopting the profession of an engineer. He left Paris for Cherbourg in 1810, but returned in 1813 on account of his health, whereupon Lagrange and Laplace persuaded him to renounce engineering and to devote himself to mathematics. He obtained an appointment at the École Polytechnique, which, however, he relinquished in 1830 on the accession of Louis-Philippe after Charles X of France of the House of Bourbon was ousted. He did this because he found it impossible to take the necessary oaths to the new government because he remained loyal to the House of Bourbon. A short sojourn at Fribourg in Switzerland was followed by his appointment in 1831 to the newly-created chair of mathematical physics at the University of Turin. (Note: At that time, Turin was the capital of the Kingdom of Sardinia, which unified Italy later in 1871. Turin is a city in northern Italy.)

In 1833, the deposed king Charles X of France summoned Cauchy to be a tutor to his grandson, the duke of Bordeaux, an appointment which enabled Cauchy to travel and thereby become acquainted with the favourable impressions that his investigations made. Charles made him a baron in return for his services. Returning to Paris in 1838, Cauchy refused a proffered chair at the Collège de France, but in 1848, the oath having been suspended, he resumed his post at the École Polytechnique, and when the oath was reinstituted after the coup d'état of 1851, Cauchy and François Arago were exempted from it. Subsequently, Cauchy lived in the France ruled by the emperor Napoleon III until his death in 1857.

Cauchy married Aloise de Bure in 1818. She was a close relative of the publisher who published most of Cauchy's works. Cauchy had two brothers: Alexandre Laurent Cauchy (1792–1857), who became a president of a division of the court of appeal in 1847, and a judge of the court of cassation in 1849; and Eugène François Cauchy (1802–1877), a publicist who also wrote several mathematical works.

Cauchy had two daughters.

Work

The genius of Cauchy was illustrated in his simple solution of the problem of Apollonius—describing a circle touching three given circles—which he discovered in 1805, his generalization of Euler's formula on polyhedra in 1811, and in several other elegant problems. More important is his memoir on wave propagation, which obtained the Grand Prix of the Institut in 1816. His greatest contributions to mathematical science are enveloped in the rigorous methods which he introduced. These are mainly embodied in his three great treatises, "Cours d'analyse de l'École Polytechnique" (1821); "Le Calcul infinitésimal" (1823); "Leçons sur les applications de calcul infinitésimal"; "La géométrie" (1826–1828); and also in his "Courses of mechanics" (for the École Polytechnique), "Higher algebra" (for the Faculté des Sciences), and of "Mathematical physics" (for the Collège de France).

Cauchy wrote numerous treatises and made 789 contributions to scientific journals. These writings covered notable topics including: the theory of series, where he developed with perspicuous skill the notion of convergence; the theory of numbers and complex quantities; the theory of groups and substitutions; and the theory of functions, differential equations, and determinants. He clarified the principles of the calculus by developing them with the aid of limits and continuity, and was the first to prove Taylor's theorem rigorously, establishing his well-known form of the remainder. He also contributed significant research in mechanics, substituting the notion of the continuity of geometrical displacements for the principle of the continuity of matter. In optics, he developed the wave theory, and his name is associated with the simple dispersion formula. In elasticity, he originated the theory of stress, and his results are nearly as valuable as those of Simeon Poisson.

Other significant contributions include being the first to prove the Fermat polygonal number theorem. Cauchy created the residue theorem, used it to derive a whole host of interesting series and integral formulas, and was the first to define complex numbers as pairs of real numbers. He also discovered many of the basic formulas in the theory of q-series. His collected works, "Œuvres complètes d'Augustin Cauchy", are published in 27 volumes.

Although Cauchy stimulated the development of mathematical rigor throughout the field, Cauchy's own research papers often used intuitive, not rigorous, methods; [ Morris Kline, "Mathematics: The Loss of Certainty", ISBN 0-19-503085-0, p. 176] thus one of his theorems was exposed to a "counter-example" by Abel, later fixed by the inclusion of uniform continuity.

In a paper published in 1855, two years before Cauchy's death, he discussed some theorems, one of which is similar to the "Argument Principle" in many modern textbooks on complex analysis. In modern control theory textbooks, the Cauchy argument principle is quite frequently used to derive the Nyquist stability criterion, which can be used to predict the stability of negative feedback amplifier and negative feedback control systems. Thus Cauchy's work has a strong impact on both pure mathematics and practical engineering.

Politics and religious beliefs

Augustin Louis Cauchy grew up in the house of a staunch royalist. This made his father flee with the family to Arcueil during the French Revolution. Their life there was apparently hard and Cauchy spoke of living on rice, bread, and crackers during the period. In any event he inherited his father's staunch royalism and hence refused to take oaths to any government after the overthrow of Charles X.

He was an equally staunch Catholic and a member of the Society of Saint Vincent de Paul. [http://www.newadvent.org/cathen/03457a.htm] He also had links to the Society of Jesus and defended them at the Academy when it was politically unwise to do so. His zeal for his faith may have led to his caring for Charles Hermite during his illness and leading Hermite to become a faithful Catholic. It also inspired Cauchy to plead on behalf of the Irish during the Potato Famine.

His royalism and religious zeal also made him contentious, which caused difficulties with his colleagues. He felt that he was mistreated for his beliefs, but his opponents felt he intentionally provoked people by berating them over religious matters or by defending the Jesuits after they had been suppressed. Niels Henrik Abel called him a "bigoted Catholic" and added he was "mad and there is nothing that can be done about him," but at the same time praised him as a mathematician. Cauchy's views were widely unpopular among mathematicians and when Guglielmo Libri Carucci dalla Sommaja was made chair in mathematics before him he, and many others, felt his views were the cause. When Libri was accused of stealing books he was replaced by Joseph Liouville which caused a rift between him and Cauchy. Another dispute concerned Jean Marie Constant Duhamel and a claim on inelastic shocks. Cauchy was later shown, by Jean-Victor Poncelet, that he was in the wrong. Despite that Cauchy refused to concede this and nursed a bitterness on the whole issue. His daughter indicated his last moments brought him a certain calm and that his final words were "Jesus, Mary, and Joseph."

(For corroboration of claims here see the link to MacTutor History of Mathematics archive for his and Hermite's biographies)

Works by A. Cauchy

* [http://gallica.bnf.fr/notice?N=FRBNF30207318 Oeuvres complètes d'Augustin Cauchy publiées sous la direction scientifique de l'Académie des sciences et sous les auspices de M. le ministre de l'Instruction publique (27 volumes)] (Paris : Gauthier-Villars et fils, 1882-1974)
* [http://gallica.bnf.fr/notice?N=FRBNF35030140 Analyse algèbrique] (Imprimerie Royale, 1821)
* [http://gallica.bnf.fr/notice?N=FRBNF37281629 Nouveaux exercices de mathématiques] (Paris : Gauthier-Villars, 1895)
* [http://www.archive.org/details/exercicedanaly01caucrich Exercices d'analyse et de physique mathematique (Volume 1)]
* [http://www.archive.org/details/exercicedanaly02caucrich Exercices d'analyse et de physique mathematique (Volume 2)]
* [http://www.archive.org/details/exercicedanaly03caucrich Exercices d'analyse et de physique mathematique (Volume 3)]
* [http://www.archive.org/details/117770570_004 Exercices d'analyse et de physique mathematique (Volume 4)] (Paris: Bachelier, 1840-1847)
* [http://mathdoc.emath.fr/cgi-bin/oeitem?id=OE_CAUCHY_2_3_P5_0 Cours d'analyse de l'École royale polytechnique]

ee also


* Cauchy argument principle
* Cauchy-Binet formula
* Cauchy boundary condition
* Cauchy's convergence test
* Cauchy (crater)
* Cauchy determinant
* Cauchy distribution
* Cauchy's equation
* Cauchy-Euler equation
* Cauchy functional equation
* Cauchy horizon
* Cauchy integral theorem
* Cauchy's integral formula
* Cauchy formula for repeated integration
* Cauchy-Frobenius lemma
* Cauchy-Hadamard theorem
* Cauchy-Kovalevskaya theorem
* Cauchy momentum equation
* Cauchy-Peano theorem
* Cauchy principal value
* Cauchy problem
* Cauchy product
* Cauchy's radical test
* Cauchy-Riemann equations
* Cauchy–Schwarz inequality
* Cauchy sequence
* Cauchy surface
* Cauchy's theorem (geometry)
* Cauchy's theorem (group theory)
* Maclaurin-Cauchy test
* Mean value theorem
* Nyquist stability criterion
* Unvariable infinite-knotted systems based on Pila au milieu du front

References

*1911

External links

*
* [http://planetmath.org/encyclopedia/CauchyCriterionForConvergence.html Cauchy criterion for convergence]
* [http://www.archive.org/details/oeuvresdaugusti01caucrich "Œuvres complètes d'Augustin Cauchy"] Académie des sciences (France). Ministère de l'éducation nationale.
*

Persondata
NAME= Cauchy, Augustin Louis
ALTERNATIVE NAMES=
SHORT DESCRIPTION= calculus
DATE OF BIRTH= birth date|1789|8|21|df=y
PLACE OF BIRTH= Dijon, France
DATE OF DEATH= death date|1857|5|23|df=y
PLACE OF DEATH= Paris, France


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Augustin-Louis Cauchy — Pour les articles homonymes, voir Cauchy. Augustin Louis Cauchy …   Wikipédia en Français

  • Augustin Louis Cauchy — [ogysˈtɛ̃ lwi koˈʃi] (* 21. August 1789 in Paris; † 23. Mai 1857 in Sceaux) war ein französischer Ma …   Deutsch Wikipedia

  • Augustin Louis Cauchy — Augustin Louis Cauchy. Nacimiento 21 de agosto de 1789 [[Archivo:{{{bandera alias 1638}}}|20x20px|border|link=|Bandera d …   Wikipedia Español

  • Augustin-Louis Cauchy —     Augustin Louis Cauchy     † Catholic Encyclopedia ► Augustin Louis Cauchy     French mathematician, b. at Paris, 21 August, 1789; d. at Sceaux, 23 May, 1857. He owed his early training to his father, a man of much learning and literary taste …   Catholic encyclopedia

  • Augustin-Louis Cauchy — [ogysˈtɛ̃ lwi koˈʃi] (* 21. August 1789 in Paris; † 23. Mai 1857 in Sceaux) war ein französischer Mathematiker. Als ein Pionie …   Deutsch Wikipedia

  • Augustin Louis Cauchy — (París 21 de agosto 1789 23 de mayo 1857) matemático francés. Cauchy fue pionero en el análisis y la teoría de permutación de grupos. También investigó la convergencia y la divergencia de las series infinitas, ecuaciones diferenciales,… …   Enciclopedia Universal

  • Augustin Louis Cauchy — Pour les articles homonymes, voir Cauchy. Augustin Louis Cauchy Cauchy vers 1840. Lithographie de Zéphirin Belliard d après une peinture de Jean Roller …   Wikipédia en Français

  • Cauchy, Augustin-Louis — • French mathematician, b. at Paris, 21 August, 1789; d. at Sceaux, 23 May, 1857 Catholic Encyclopedia. Kevin Knight. 2006 …   Catholic encyclopedia

  • Cauchy, Augustin-Louis, Baron — born Aug. 21, 1789, Paris, France died May 23, 1857, Sceaux French mathematician, pioneer of analysis and group theory. After a career as a military engineer in Napoleon s navy, he wrote a treatise in 1813 that became the basis of the theory of… …   Universalium

  • Cauchy,Baron Augustin Louis — Cau·chy (kō shēʹ), Baron Augustin Louis. 1789 1857. French mathematician whose Cours d Analyse (1821) introduced modern rigor into calculus. He founded the theory of functions of a complex variable and made contributions to the mathematical… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”