Arctic oscillation

Arctic oscillation

The Arctic oscillation (AO) or Northern Annular Mode/Northern Hemisphere Annular Mode (NAM) is an index (which varies over time with no particular periodicity) of the dominant pattern of non-seasonal sea-level pressure variations north of 20N latitude, and it is characterized by pressure anomalies of one sign in the Arctic with the opposite anomalies centered about 37-45N.[1] The AO is believed by climatologists to be causally related to, and thus partially predictive of, weather patterns in locations many thousands of miles away, including many of the major population centers of Europe and North America. NASA climatologist Dr. James Hansen explains the mechanism by which the AO affects weather at points so distant from the Arctic: "The degree to which Arctic air penetrates into middle latitudes is related to the AO index, which is defined by surface atmospheric pressure patterns. When the AO index is positive, surface pressure is low in the polar region. This helps the middle latitude jet stream to blow strongly and consistently from west to east, thus keeping cold Arctic air locked in the polar region. When the AO index is negative, there tends to be high pressure in the polar region, weaker zonal winds, and greater movement of frigid polar air into middle latitudes." This zonally symmetric seesaw between sea level pressures in polar and temperate latitudes was first identified by Edward Lorenz [2] and named in 1998 by David W.J. Thompson and John Michael Wallace.[3]

The North Atlantic oscillation (NAO) is a close relative of the AO and there exist arguments about whether one or the other is more fundamentally representative of the atmosphere's dynamics; Ambaum et al. argue that the NAO can be identified in a more physically meaningful way.[4]

Over most of the past century, the Arctic Oscillation alternated between its positive and negative phases. Starting in the 1970s the oscillation has trended to more of a positive phase when averaged using a 60-day running mean, though it has trended to a more neutral state in the last decade. The oscillation still fluctuates stochastically between negative and positive values on daily, monthly, seasonal and annual time scales, although, despite its stochastic nature, meteorologists have attained high levels of predictive accuracy in recent times, at least for the shorter term forecasts. (The correlation between actual observations and the 7-day mean GFS ensemble AO forecasts is approximately 0.9, a figure at the high end for that statistic.)[5] The more positive direction in recent decades has led to lower than normal arctic air pressure and higher than normal temperatures in much of the United States and northern Eurasia.[6] The National Snow and Ice Data Center describes the effects of the AO in some detail: "In the positive phase, higher pressure at midlatitudes drives ocean storms farther north, and changes in the circulation pattern bring wetter weather to Alaska, Scotland and Scandinavia, as well as drier conditions to the western United States and the Mediterranean. In the positive phase, frigid winter air does not extend as far into the middle of North America as it would during the negative phase of the oscillation. This keeps much of the United States east of the Rocky Mountains warmer than normal, but leaves Greenland and Newfoundland colder than usual. Weather patterns in the negative phase are in general "opposite" to those of the positive phase."

Climatologists are now routinely invoking the Arctic Oscillation in their official public explanations for extremes of weather. The following statement from the National Oceanic and Atmospheric Administration's National Climatic Data Center: "State of the Climate December 2010" is very representative of this increasing tendency: "Cold arctic air gripped western Europe in the first three weeks of December. Two major snowstorms, icy conditions, and frigid temperatures wreaked havoc across much of the region...[detailed descriptions of the 'havoc' follow]...The harsh winter weather was attributed to a negative Arctic Oscillation, which is a climate pattern that influences weather in the Northern Hemisphere. A very persistent, strong ridge of high pressure, or 'blocking system', near Greenland allowed cold Arctic air to slide south into Europe. Europe was not the only region in the Northern Hemisphere affected by the Arctic Oscillation. A large snow storm and frigid temperatures affected much of the Midwest United States on December 10–13...[more specifics follow]...

A further, quite graphic illustration of the effects of the negative phase of the oscillation occurred in February 2010. In that month, the Arctic Oscillation reached its most negative monthly mean value, -4.266, in the entire post-1950 era (the period of accurate record-keeping). That month was characterized by three separate historic snowstorms that occurred in the mid-Atlantic region of the United States. The first storm dumped 25 inches on Baltimore, Maryland, on February 5–6, and then a second dumped 19.5 inches on February 9–10. In New York City, a separate storm deposited 20.9 inches on February 25–26. This kind of snowstorm activity is as anomalous and extreme as the negative AO value itself. Similarly, the greatest negative value for the AO since 1950 in January was -3.767 in 1977, which coincided with the coldest mean January temperature in New York City, Washington, D.C., Baltimore, and many other mid-Atlantic locations in that span of time. And though the January AO has been negative only 60.6% of the time between 1950 and 2010, 9 of the 10 coldest Januarys in New York City since 1950 have coincided with negative AOs.[7]

However, the correlation between sharply negative Arctic Oscillations and excessive winter cold and snow in regions vulnerable in that way to these negative AOs should not be overstated. It is by no means a simple, one-to-one equivalence. An extreme Arctic Oscillation does not necessarily mean extreme weather will occur. For example, since 1950, 8 out of the 10 coldest Januarys in New York did not coincide with the 10 lowest January AO values. And the fourth warmest January there since 1950 coincided with one of those 10 most negative AOs.[7] So, although many climatologists believe that the Arctic Oscillation affects the probability of certain weather events occurring in certain places, the heightened chance of a phenomenon by no means assures it, nor does the lessened likelihood exclude it. Further, the precise value of the AO index only imperfectly reflects the severity of the weather associated with it.

See also

References

External links



Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Oscillation arctique — L’ oscillation arctique (OA) est une variation de la différence de pression atmosphérique, au niveau de la mer, entre 20 N et le Pôle d une année à l autre. Cette variation est reliée à l intensité et la position moyenne des dépressions et… …   Wikipédia en Français

  • Oscillation nord-atlantique — L’oscillation nord atlantique (ONA, plus connue sous le sigle anglais NAO) désigne un phénomène touchant le système climatique du nord de l Océan Atlantique. L ONA décrit les variations du régime océan atmosphère sur la région et se mesure… …   Wikipédia en Français

  • North Atlantic oscillation — For the rock band, see North Atlantic Oscillation (band). The North Atlantic oscillation (NAO) is a climatic phenomenon in the North Atlantic Ocean of fluctuations in the difference of atmospheric pressure at sea level between the Icelandic low… …   Wikipedia

  • El Niño-Southern Oscillation — El Niño redirects here. For other uses, see El Niño (disambiguation). ENSO redirects here. For other uses, see Enso (disambiguation). The 1997 El Niño observed by TOPEX/Poseidon. The white areas off the tropical coasts of South and North America… …   Wikipedia

  • Climate oscillation — A climate oscillation is any oscillation within global or regional climate. These fluctuations in atmospheric temperature, sea surface temperature, precipitation or other parameters can be quasi periodic, often occurring on inter annual, multi… …   Wikipedia

  • North Pacific Oscillation — The NPO pattern. The North Pacific Oscillation (NPO) is a teleconnection pattern first described by Walker and Bliss[1] and characterized by a north south seesaw in sea level pressure over the North Pacific. Rogers, using surface atmospheric… …   Wikipedia

  • Climate of the Arctic — The climate of the Arctic is characterized by long, cold winters and short, cool summers. There is a large amount of variability in climate across the Arctic, but all regions experience extremes of solar radiation in both summer and winter. Some… …   Wikipedia

  • Climate change in the Arctic — Very substantial decrease in Arctic Sea ice in 2007 from 2005 and also from 1979–2000 average …   Wikipedia

  • Antarctic oscillation — The Antarctic oscillation (AAO, to distinguish it from the Arctic oscillation or AO) is a low frequency mode of atmospheric variability of the southern hemisphere. It is also known as the Southern Annular Mode (SAM) or Southern Hemisphere Annular …   Wikipedia

  • Piora Oscillation — The Piora Oscillation was an abrupt cold and wet period in the climate history of the Holocene Epoch; it is generally dated to the period of c. 3200 to 2900 BCE. [ [http://www.news about space.org/story/2409.html Space and Earth Science News… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”