Entscheidungsproblem

In mathematics, the Entscheidungsproblem (pronounced [ɛntˈʃaɪdʊŋspʁoˌbleːm], German for 'decision problem') is a challenge posed by David Hilbert in 1928. The Entscheidungsproblem asks for an algorithm that will take as input a description of a formal language and a mathematical statement in the language and produce as output either "True" or "False" according to whether the statement is true or false. Such an algorithm would be able to decide, for example, whether statements such as Goldbach's conjecture or the Riemann hypothesis are true, even though no proof or disproof of these statements is known. The Entscheidungsproblem has often been identified in particular with the decision problem for first-order logic (that is, the problem of algorithmically determining whether a first-order statement is universally valid).

In 1936 and 1937 Alonzo Church and Alan Turing respectively,[1] published independent papers showing that it is impossible to decide algorithmically whether statements in arithmetic are true or false, and thus a general solution to the Entscheidungsproblem is impossible. This result is now known as Church's Theorem or the Church–Turing Theorem (not to be confused with the Church–Turing thesis).

Contents

History of the problem

The origin of the Entscheidungsproblem goes back to Gottfried Leibniz, who in the seventeenth century, after having constructed a successful mechanical calculating machine, dreamt of building a machine that could manipulate symbols in order to determine the truth values of mathematical statements (Davis 2000: pp. 3–20). He realized that the first step would have to be a clean formal language, and much of his subsequent work was directed towards that goal. In 1928, David Hilbert and Wilhelm Ackermann posed the question in the form outlined above.

In continuation of his "program" with which he challenged the mathematics community in 1900, at a 1928 international conference David Hilbert asked three questions, the third of which became known as "Hilbert's Entscheidungsproblem" (Hodges p. 91). As late as 1930 he believed that there would be no such thing as an unsolvable problem (Hodges p. 92, quoting from Hilbert).

Negative answer

Before the question could be answered, the notion of "algorithm" had to be formally defined. This was done by Alonzo Church in 1936 with the concept of "effective calculability" based on his λ calculus and by Alan Turing in the same year with his concept of Turing machines. It was later recognized that these are equivalent models of computation.

The negative answer to the Entscheidungsproblem was then given by Alonzo Church in 1935–36 and independently shortly thereafter by Alan Turing in 1936–37. Church proved that there is no computable function which decides for two given λ calculus expressions whether they are equivalent or not. He relied heavily on earlier work by Stephen Kleene. Turing reduced the halting problem for Turing machines to the Entscheidungsproblem. The work of both authors was heavily influenced by Kurt Gödel's earlier work on his incompleteness theorem, especially by the method of assigning numbers (a Gödel numbering) to logical formulas in order to reduce logic to arithmetic.

Turing's argument is as follows. Suppose we had a general decision algorithm for statements in a first-order language. The question whether a given Turing machine halts or not can be formulated as a first-order statement, which would then be susceptible to the decision algorithm. But Turing had proven earlier that no general algorithm can decide whether a given Turing machine halts.

The Entscheidungsproblem is related to Hilbert's tenth problem, which asks for an algorithm to decide whether Diophantine equations have a solution. The non-existence of such an algorithm, established by Yuri Matiyasevich in 1970, also implies a negative answer to the Entscheidungsproblem.

Some first-order theories are algorithmically decidable; examples of this include Presburger arithmetic, real closed fields and static type systems of (most) programming languages. The general first-order theory of the natural numbers expressed in Peano's axioms cannot be decided with such an algorithm, however.

See also

Notes

  1. ^ Church's paper was presented to the American Mathematical Society on 19 April 1935 and published on 15 April 1936. Turing, who had made substantial progress in writing up his own results, was disappointed to learn of Church's proof upon its publication (see correspondence between Max Newman and Church in Alonzo Church papers). Turing quickly completed his paper and rushed it to publication; it was received by the Proceedings of the London Mathematical Society on 28 May 1936, read on 12 November 1936, and published in January 1937 series 2, volume 42 (1936-1937); Turing added corrections in volume 43(1937) pp. 544-546. See Davis 1965:116.

References

  • Alonzo Church, "An unsolvable problem of elementary number theory", American Journal of Mathematics, 58 (1936), pp 345–363
  • Alonzo Church, "A note on the Entscheidungsproblem", Journal of Symbolic Logic, 1 (1936), pp 40–41.
  • Martin Davis, 2000, Engines of Logic, W.W. Norton & Company, London, ISBN 0-393-32229-7 pbk.
  • Alan Turing, "On computable numbers, with an application to the Entscheidungsproblem", Proceedings of the London Mathematical Society, Series 2, 42 (1937), pp 230–265. Online versions: from journal website, from Turing Digital Archive, from abelard.org. Errata appeared in Series 2, 43 (1937), pp 544–546.
  • Martin Davis, "The Undecidable, Basic Papers on Undecidable Propositions, Unsolvable Problems And Computable Functions", Raven Press, New York, 1965. Turing's paper is #3 in this volume. Papers include those by Godel, Church, Rosser, Kleene, and Post.
  • Andrew Hodges, Alan Turing: The Enigma, Simon and Schuster, New York, 1983. Alan M. Turing's biography. Cf Chapter "The Spirit of Truth" for a history leading to, and a discussion of, his proof.
  • Toulmin, Stephen, "Fall of a Genius", a book review of "Alan Turing: The Enigma by Andrew Hodges", in The New York Review of Books, January 19, 1984, p. 3ff.
  • Alfred North Whitehead and Bertrand Russell, Principia Mathematica to *56, Cambridge at the University Press, 1962. Re: the problem of paradoxes, the authors discuss the problem of a set not be an object in any of its "determining functions", in particular "Introduction, Chap. 1 p. 24 "...difficulties which arise in formal logic", and Chap. 2.I. "The Vicious-Circle Principle" p. 37ff, and Chap. 2.VIII. "The Contradictions" p. 60 ff.

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Entscheidungsproblem — Saltar a navegación, búsqueda El Entscheidungsproblem (en castellano: problema de decisión) fue el reto en lógica simbólica de encontrar un algoritmo general que decidiera si una fórmula del cálculo de primer orden es un teorema. En 1936, de… …   Wikipedia Español

  • Entscheidungsproblem — Eine Eigenschaft auf einer Menge heißt entscheidbar (auch: rekursiv), wenn es ein Entscheidungsverfahren für sie gibt. Ein Entscheidungsverfahren ist ein Algorithmus, der für jedes Element der Menge beantworten kann, ob es die Eigenschaft hat… …   Deutsch Wikipedia

  • Entscheidungsproblem — Problème de la décision En logique mathématique, on appelle problème de la décision le fait de déterminer de façon mécanique, par un algorithme, si un énoncé est un théorème de la logique égalitaire du premier ordre, c’est à dire s il se dérive… …   Wikipédia en Français

  • Entscheidungsproblem — noun /ɛntˈʃʌɪdʊŋsˌpɹɒbləm/ A decision problem, of finding a way to decide whether a formula is true or provable within a given system. ‘The Entscheidungsproblem,’ Rudy said. ‘Meaning?’ Alan explained, ‘Hilbert wanted to know whether any given… …   Wiktionary

  • Entscheidungsproblem — El Entscheidungsproblem (en castellano: problema de decisión) fue el reto en lógica simbólica de encontrar un algoritmo general que decidiera si una fórmula del cálculo de primer orden es un teorema. En 1936, de manera independiente, Alonzo… …   Enciclopedia Universal

  • Entscheidungsproblem — …   Useful english dictionary

  • Markov-Entscheidungsproblem — Bei dem Markow Entscheidungsproblem (MEP, auch Markow Entscheidungsprozess) handelt es sich um ein nach dem russischen Mathematiker Andrei Andrejewitsch Markow benanntes Modell von Entscheidungsproblemen, bei denen der Nutzen eines Agenten von… …   Deutsch Wikipedia

  • Markow-Entscheidungsproblem — Bei dem Markow Entscheidungsproblem (MEP, auch Markow Entscheidungsprozess) handelt es sich um ein nach dem russischen Mathematiker Andrei Andrejewitsch Markow benanntes Modell von Entscheidungsproblemen, bei denen der Nutzen eines Agenten von… …   Deutsch Wikipedia

  • Anfragenselektion — Entscheidungsproblem im Rahmen des Investitionsgüter Marketing, bes. bei Sondermaschinen, Anlagen und Systemen. Da die Angebotserstellung aufgrund einer Anfrage mit erheblichen Kosten verbunden ist und die Auftragserteilung schwerwiegende… …   Lexikon der Economics

  • Turing machine — For the test of artificial intelligence, see Turing test. For the instrumental rock band, see Turing Machine (band). Turing machine(s) Machina Universal Turing machine Alternating Turing machine Quantum Turing machine Read only Turing machine… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”