Nonribosomal peptide

Nonribosomal peptide

Nonribosomal peptides (NRP) are a class of peptide secondary metabolites, usually produced by microorganisms like bacteria and fungi. Nonribosomal peptides are also found in higher organisms, such as nudibranchs, but are thought to be made by bacteria inside these organisms.[citation needed] While there exist a wide range of peptides that are not synthesized by ribosomes, the term nonribosomal peptide typically refers to a very specific set of these as discussed in this article.

Nonribosomal peptides are synthesized by nonribosomal peptide synthetases, which, unlike the ribosomes, are independent of messenger RNA. Each nonribosomal peptide synthetase can synthesize only one type of peptide. Nonribosomal peptides often have a cyclic and/or branched structures, can contain non-proteinogenic amino acids including D-amino acids, carry modifications like N-methyl and N-formyl groups, or are glycosylated, acylated, halogenated, or hydroxylated. Cyclization of amino acids against the peptide "backbone" is often performed, resulting in oxazolines and thiazolines; these can be further oxidized or reduced. On occasion, dehydration is performed on serines, resulting in dehydroalanine. This is just a sampling of the various manipulations and variations that nonribosomal peptides can perform. Nonribosomal peptides are often dimers or trimers of identical sequences chained together or cyclized, or even branched.

Nonribosomal peptides are a very diverse family of natural products with an extremely broad range of biological activities and pharmacological properties. They are often toxins, siderophores, or pigments. Nonribosomal peptide antibiotics, cytostatics, and immunosuppressants are in commercial use.

Contents

Examples

Biosynthesis

Nonribosomal peptides are synthesized by one or more specialized nonribosomal peptide-synthetase (NRPS) enzymes. The NRPS genes for a certain peptide are usually organized in one operon in bacteria and in gene clusters in eukaryotes. However the first fungal NRP to be found was ciclosporin. It is synthesized by a single 1.6MDa NRPS [3]. The enzymes are organized in modules that are responsible for the introduction of one additional amino acid. Each module consists of several domains with defined functions, separated by short spacer regions of about 15 amino acids.

The biosynthesis of nonribosomal peptides shares characteristics with the polyketide and fatty acid biosynthesis. Due to these structural and mechanistic similarities, some nonribosomal peptide synthetases contain polyketide synthase modules for the insertion of acetate or propionate-derived subunits into the peptide chain.

Modules

The order of modules and domains of a complete nonribosomal peptide synthetase is as follows:

  • Initiation or Starting module: [F/NMT]-A-PCP-
  • Elongation or Extending modules: -(C/Cy)-[NMT]-A-PCP-[E]-
  • Termination or Releasing module: -(TE/R)

(Order: N-terminus to C-terminus; []: optionally; (): alternatively)

Domains

  • F: Formylation (optional)
  • A: Adenylation (required in a module)
  • PCP: Thiolation and Peptide Carrier Protein with attached 4'-phospho-pantetheine (required in a module)
  • C: Condensation forming the amide bond (required in a module)
  • Cy: Cylization into thiazoline or oxazolines (optional)
  • Ox: Oxidation of thiazolines or oxazolines to thiazoles or oxazoles (optional)
  • Red: Reduction of thiazolines or oxazolines to thiazolidines or oxazolidines (optional)
  • E: Epimerization into D-amino acids (optional)
  • NMT: N-methylation (optional)
  • TE: Termination by a thio-esterase (only found once in a NRPS)
  • R: Reduction to terminal aldehyde or alcohol (optional)

Starting stage

  • Loading: The first amino acid is activated with ATP as a mixed acyl-phosphoric acid anhydride with AMP by the A-domain and loaded onto the serine-attached 4'-phospho-pantethine (4'PP) sidechain of the PCP-domain catalyzed by the PCP-domain (thiolation) .
  • Sometimes the amino group of the bound amino acid is formylated by an F-domain or methylated by an NMT-domain.

Elongation stages

  • Loading: Analogous to the starting stage, each module loads its specific amino acid onto its PCP-domain.
  • Condensation: The C-domain catalyzes the amide bond formation between the thioester group of the growing peptide chain from the previous module with the amino group of the current module. The extended peptide is now attached to the current PCP-domain.
  • Epimerization: Sometimes an E-domain epimerizes the innermost amino acid of the peptide chain into the D-configuration.
  • This cycle is repeated for each elongation module.

Termination stage

  • Termination: The TE-domain (thio-esterase domain) hydrolyzes the completed polypeptide chain from the ACP-domain of the previous module, thereby often forming cyclic amides (lactams) or cyclic esters (lactones).
  • Also, the peptide can be released by an R-domain that reduces the thioester bond to terminal aldehyde or alcohol.

Processing

The final peptide is often modified, e.g., by glycosylation, acylation, halogenation, or hydroxylation. The responsible enzymes are usually associated to the synthetase complex and their genes are organized in the same operons or gene clusters.

Priming and Deblocking

To become functional, the 4'-phospho-pantetheine sidechain of acyl-CoA molecules has to be attached to the PCP-domain by 4'PP transferases (Priming) and the S-attached acyl group has to be removed by specialized associated thioesterases (TE-II) (Deblocking).

Substrate specificities

Most domains have a very broad substrate specificity and usually only the A-domain determines which amino acid is incorporated in a module. Ten amino acids that control substrate specificity and can be considered the 'codons' of nonribosomal peptide synthesis have been identified. The condensation C-domain is also believed to have substrate specificity, especially if located behind an epimerase E-domain-containing module where it functions as a 'filter' for the epimerized isomer.

Mixed with Polyketides

Due to the similarity with polyketide synthetases (PKS), many secondary metabolites are, in fact, fusions of NRPs and polyketides. In essence, this occurs when PK modules follow NRP modules, and vice versa. Although there is high degree of similarity between the PCP domains of both types of sythetases, the mechanism of condensation is different from a chemical standpoint (claisen vs. transamidation).

See also

Literature

  • Dirk Schwarzer, Robert Finking, and Mohamed A. Marahiel (2003). "Nonribosomal peptides: from genes to products". Nat. Prod. Rep. 20: 275. doi:10.1039/b111145k. PMID 12828367. 
  • Mohamed A. Marahiel, Torsten Stachelhaus, and Henning D. Mootz (1997). "Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis". Chem. Rev. 97: 2651. doi:10.1021/cr960029e. PMID 11851476. 

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Nonribosomal peptide — …   Википедия

  • Peptide — Peptides redirects here. For the journal, see Peptides (journal). A tetrapeptide (example Val Gly Ser Ala) with green marked amino end (L Valine) and …   Wikipedia

  • Cyclic peptide — α Amanitin bacitracin …   Wikipedia

  • Vancomycin — Drugbox IUPAC name = unable to be assigned width=300 CAS number=1404 90 6 ATC prefix=A07 ATC suffix=AA09 ATC supplemental=ATC|J01|XA01 PubChem=14969 DrugBank=APRD01287 C=66 | H=75 | Cl=2 | N=9 | O=24 molecular weight = 1449.3 g.mol 1… …   Wikipedia

  • Daptomycin — Systematic (IUPAC) name N decanoyl L tryptophyl L asparaginyl L aspartyl L threonylglycyl L ornithyl L aspartyl D alanyl L aspartylglycyl D seryl threo 3 methyl L glutamyl 3 anthraniloyl L alanine[egr]1 lactone …   Wikipedia

  • Bleomycin — Drugbox IUPAC name = rel (3 { [(2 {(5R,8R,9R,10S,13R) 15 {6 Amino 2 [(1R) 3 amino 1 { [(2R) 2,3 diamino 3 oxopropyl] amino} 3 oxopropyl] 5 methyl 4 pyrimidinyl} 13 [{ [(2S,3R,4R,5R,6R) 3 { [(2S,3R,4R,5S,6S) 4 (carbamoyloxy) 3,5 dihydroxy 6… …   Wikipedia

  • Peptid — Ein Peptid ist ein kleines Protein. Es ist eine organische Verbindung, die aus einer Verknüpfung mehrerer Aminosäuren entstanden ist[1]. Dabei sind die einzelnen Aminosäuren in einer definierten Reihenfolge (Sequenz) zu einer Kette verbunden. Die …   Deutsch Wikipedia

  • Tyrocidine — chembox new ImageFile= Tyrocidine.png ImageSize= 300px IUPACName= 3 ((3S,6R,9S,12S,15S,18S,21S,24S,27R,32aS) 9 (2 amino 2 oxoethyl) 21 (3 aminopropyl) 3,6,27 tribenzyl 15 (4 hydroxybenzyl) 24 isobutyl 18 isopropyl 1,4,7,10,13,16,19,22,25,28… …   Wikipedia

  • Ciclosporin — Cyclosporin redirects here. For other types of cyclosporin, see Cyclosporins. Ciclosporin Systematic ( …   Wikipedia

  • Chemical biology — is a scientific discipline spanning the fields of chemistry and biology that involves the application of chemical techniques and tools, often compounds produced through synthetic chemistry, to the study and manipulation of biological systems.… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”