Endocrine system

In physiology, the endocrine system is a system of glands, each of which secretes a type of hormone directly into the bloodstream to regulate the body. The endocrine system is in contrast to the exocrine system, which secretes its chemicals using ducts. It derives from the Greek words "endo" meaning inside, within, and "crinis" for secrete. The endocrine system is an information signal system like the nervous system, yet its effects and mechanism are classifiably different. The endocrine system's effects are slow to initiate, and prolonged in their response, lasting for hours to weeks. The nervous system sends information very quickly, and responses are generally short lived. Hormones are substances (chemical mediators) released from endocrine tissue into the bloodstream where they travel to target tissue and generate a response. Hormones regulate various human functions, including metabolism, growth and development, tissue function, and mood. The field of study dealing with the endocrine system and its disorders is endocrinology, a branch of internal medicine.

Features of endocrine glands are, in general, their ductless nature, their vascularity, and usually the presence of intracellular vacuoles or granules storing their hormones. In contrast, exocrine glands, such as salivary glands, sweat glands, and glands within the gastrointestinal tract, tend to be much less vascular and have ducts or a hollow lumen.

In addition to the specialised endocrine organs mentioned above, many other organs that are part of other body systems, such as the kidney, liver, heart and gonads, have secondary endocrine functions. For example the kidney secretes endocrine hormones such as erythropoietin and renin.

The endocrine system is made of a series of glands that produce chemicals called hormones. A number of glands that signal each other in sequence is usually referred to as an axis, for example, the hypothalamic-pituitary-adrenal axis.

Contents

Endocrine organs and secreted hormones

Central nervous system

Endocrine glands in the human head and neck and their hormones

Hypothalamus

Secreted hormone Abbreviation Produced by Effect
Thyrotropin-releasing hormone
(Prolactin-releasing hormone)
TRH,, or Parvocellular neurosecretory neurons Stimulate thyroid-stimulating hormone (TSH) released from anterior pituitary (primarily)
Stimulate prolactin release from anterior pituitary
Dopamine
(Prolactin-inhibiting hormone)
DA or PIH Dopamine neurons of the arcuate nucleus Inhibit prolactin released from anterior pituitary
Growth hormone-releasing hormone GHRH Neuroendocrine neurons of the Arcuate nucleus Stimulate Growth hormone (GH) release from anterior pituitary
Somatostatin
(growth hormone-inhibiting hormone)
SS, GHIH, or SRIF Neuroendocrine cells of the Periventricular nucleus Inhibit Growth hormone (GH) release from anterior pituitary
Inhibit thyroid-stimulating hormone (TSH) release from anterior pituitary
Gonadotropin-releasing hormone GnRH or LHRH Neuroendocrine cells of the Preoptic area Stimulate follicle-stimulating hormone () release from anterior pituitary
Stimulate luteinizing hormone (LH) release from anterior pituitary
Corticotropin-releasing hormone CRH or CRF Parvocellular neurosecretory neurons or the Paraventricular Nucleus Stimulate adrenocorticotropic hormone (ACTH) release from anterior pituitary
Oxytocin OT or OXT Magnocellular neurosecretory neurons of the Supraoptic Nucleus and Paraventricular Nucleus Uterine contraction
Lactation (letdown reflex)
Vasopressin
(antidiuretic hormone)
ADH or AVP or VP Parvocellular neurosecretory neurons, Magnocellular neurosecretory neurons of the Paraventricular Nucleus and Supraoptic Nucleus Increases water permeability in the distal convoluted tubule and collecting duct of nephrons, thus promoting water reabsorption and increasing blood volume

Melanocyte REleasing Hormone (MRH) Stimulates the secretion of Melanocyte-stimulating hormone from intermediate pituitary lobe.

Pineal body (epiphysis)

Secreted hormone From cells Effect
Melatonin Pinealocytes Antioxidant
Monitors the circadian rhythm including inducement of drowsiness and lowering of the middle body temperature sleep cycle

Pituitary Gland (hypophysis)

Anterior pituitary lobe (adenohypophysis)
Secreted hormone Abbreviation From cells Effect
Growth hormone
(somatotropin)
GH Somatotrophs Stimulates growth and cell reproduction
Stimulates Insulin-like growth factor 1 release from liver
Thyroid-stimulating hormone
(thyrotropin)
TSH Thyrotrophs Stimulates thyroxine (T4) and triiodothyronine (T3) synthesis and release from thyroid gland
Stimulates iodine absorption by thyroid gland
Adrenocorticotropic hormone
(corticotropin)
ACTH Corticotrophs Stimulates corticosteroid (glucocorticoid and mineralcorticoid) and androgen synthesis and release from adrenocortical cells
Beta-endorphin - Corticotrophs Inhibits perception of pain
Follicle-stimulating hormone FSH Gonadotrophs In females: Stimulates maturation of ovarian follicles in ovary
In males: Stimulates maturation of seminiferous tubules
In males: Stimulates spermatogenesis
In males: Stimulates production of androgen-binding protein from Sertoli cells of the testes
Luteinizing hormone LH Gonadotrophs In females: Stimulates ovulation
In females: Stimulates formation of corpus luteum
In males: Stimulates testosterone synthesis from Leydig cells (interstitial cells)
Prolactin PRL Lactotrophs Stimulates milk synthesis and release from mammary glands
Mediates sexual gratification
Melanocyte-stimulating hormone MSH Melanotropes in the Pars intermedia of the Anterior Pituitary Stimulates melanin synthesis and release from skin/hair melanocytes
Posterior pituitary lobe (neurohypophysis)
Secreted hormone Abbreviation From cells Effect
Oxytocin Magnocellular neurosecretory cells Uterine contraction
Lactation (letdown reflex)
Vasopressin
(antidiuretic hormone)
ADH or AVP Parvocellular neurosecretory neurons Increases water permeability in the distal convoluted tubule and collecting duct of nephrons, thus promoting water reabsorption and increasing blood volume

Oxytocin and anti-diuretic hormone are not secreted in the posterior lobe, merely stored.

Thyroid

Secreted hormone Abbreviation From cells Effect
Triiodothyronine T3 Thyroid epithelial cell (More potent form of thyroid hormone)
Stimulates body oxygen and energy consumption, thereby increasing the basal metabolic rate
Stimulates RNA polymerase I and II, thereby promoting protein synthesis
Thyroxine
(tetraiodothyronine)
T4 Thyroid epithelial cells (Less active form of thyroid hormone)
(Acts as a prohormone to triiodothyronine)
Stimulates body oxygen and energy consumption, thereby increasing the basal metabolic rate
Stimulates RNA polymerase I and II, thereby promoting protein synthesis
Calcitonin Parafollicular cells Stimulates osteoblasts and thus bone construction
Inhibits Ca2+ release from bone, thereby reducing blood Ca2+

Alimentary system

Endocrine Alimentary system en.svg

Stomach

Secreted hormone Abbreviation From cells Effect
Gastrin (Primarily) G cells Secretion of gastric acid by parietal cells
Ghrelin P/D1 cells Stimulate appetite,

secretion of growth hormone from anterior pituitary gland

Neuropeptide Y NPY increased food intake and decreased physical activity. It can be associated with obesity.
Somatostatin D cells Suppress release of gastrin, cholecystokinin (CCK), secretin, motilin, vasoactive intestinal peptide (VIP), gastric inhibitory polypeptide (GIP), enteroglucagon

Lowers rate of gastric emptying Reduces smooth muscle contractions and blood flow within the intestine.[1]

Histamine ECL cells stimulate gastric acid secretion
Endothelin X cells Smooth muscle contraction of stomach[2]

Duodenum

Secreted hormone From cells Effect
Secretin S cells Secretion of bicarbonate from liver, pancreas and duodenal Brunner's glands

Enhances effects of cholecystokinin Stops production of gastric juice

Cholecystokinin I cells Release of digestive enzymes from pancreas

Release of bile from gallbladder hunger suppressant

Liver

Secreted hormone Abbreviation From cells Effect
Insulin-like growth factor (or somatomedin) (Primarily) IGF Hepatocytes insulin-like effects

regulate cell growth and development

Angiotensinogen and angiotensin Hepatocytes vasoconstriction

release of aldosterone from adrenal cortex dipsogen.

Thrombopoietin Hepatocytes stimulates megakaryocytes to produce platelets[3]

Pancreas

Secreted hormone From cells Effect
Insulin (Primarily) β Islet cells Intake of glucose, glycogenesis and glycolysis in liver and muscle from blood

intake of lipids and synthesis of triglycerides in adipocytes Other anabolic effects

Glucagon (Also Primarily) α Islet cells glycogenolysis and gluconeogenesis in liver

increases blood glucose level

Somatostatin δ Islet cells Inhibit release of insulin[4]

Inhibit release of glucagon[4] Suppress the exocrine secretory action of pancreas.

Pancreatic polypeptide PP cells Self regulate the pancreas secretion activities and effect the hepatic glycogen levels.

Kidney

Secreted hormone From cells Effect
Renin (Primarily) Juxtaglomerular cells Activates the renin-angiotensin system by producing angiotensin I of angiotensinogen
Erythropoietin (EPO) Extraglomerular mesangial cells Stimulate erythrocyte production
Calcitriol (1,25-dihydroxyvitamin D3) Active form of vitamin D3

Increase absorption of calcium and phosphate from gastrointestinal tract and kidneys inhibit release of PTH

Thrombopoietin stimulates megakaryocytes to produce platelets[3]

Adrenal glands

Adrenal cortex

Secreted hormone From cells Effect
Glucocorticoids (chiefly cortisol) zona fasciculata and zona reticularis cells Stimulates gluconeogenesis
Stimulates fat breakdown in adipose tissue
Inhibits protein synthesis
Inhibits glucose uptake in muscle and adipose tissue
Inhibits immunological responses (immunosuppressive)
Inhibits inflammatory responses (anti-inflammatory)
Mineralocorticoids (chiefly aldosterone) Zona glomerulosa cells Stimulates active sodium reabsorption in kidneys
Stimulates passive water reabsorption in kidneys, thus increasing blood volume and blood pressure
Stimulates potassium and H+ secretion into nephron of kidney and subsequent excretion
Androgens (including DHEA and testosterone) Zona fasciculata and Zona reticularis cells In males: Relatively small effect compared to androgens from testes
In females: masculinizing effects (i.e. excessive facial hair)

Adrenal medulla

Secreted hormone From cells Effect
Adrenaline (epinephrine) (Primarily) Chromaffin cells Fight-or-flight response:
Noradrenaline (norepinephrine) Chromaffin cells Fight-or-flight response:
Dopamine Chromaffin cells Increase heart rate and blood pressure
Enkephalin Chromaffin cells Regulate pain

Reproductive

Endocrine reproductive system en.svg

Testes

Secreted hormone From cells Effect
Androgens (chiefly testosterone) Leydig cells Anabolic: growth of muscle mass and strength, increased bone density, growth and strength,

Virilizing: maturation of sex organs, formation of scrotum, deepening of voice, growth of beard and axillary hair.

Estradiol Sertoli cells Prevent apoptosis of germ cells[5]
Inhibin Sertoli cells Inhibit production of FSH

Ovarian follicle / Corpus luteum

Secreted hormone From cells Effect
Progesterone Granulosa cells, theca cells Support pregnancy[6]:
  • Convert endometrium to secretory stage
  • Make cervical mucus thick and impenetrable to sperm.
  • Inhibit immune response, e.g., towards the human embryo
  • Decrease uterine smooth muscle contractility[6]
  • Inhibit lactation
  • Inhibit onset of labor.

Other:

  • Raise epidermal growth factor-1 levels
  • Increase core temperature during ovulation[7]
  • Reduce spasm and relax smooth muscle (widen bronchi and regulate mucus)

Anti-inflammatory

Androstenedione Theca cells Substrate for estrogen
Estrogens (mainly estradiol) Granulosa cells Structural:

Protein synthesis:

  • Increase hepatic production of binding proteins

Coagulation:

Fluid balance:

Gastrointestinal tract:

  • Reduce bowel motility
  • Increase cholesterol in bile

Melanin:

  • Increase pheomelanin, reduce eumelanin

Cancer:

  • Support hormone-sensitive breast cancers [9] (Suppression of production in the body of estrogen is a treatment for these cancers.)

Lung function:

  • Promote lung function by supporting alveoli.[10]
Inhibin Granulosa cells Inhibit production of FSH from anterior pituitary

Placenta (when pregnant)

Secreted hormone Abbreviation From cells Effect
Progesterone (Primarily) Support pregnancy[6]:
  • Inhibit immune response, towards the fetus.
  • Decrease uterine smooth muscle contractility[6]
  • Inhibit lactation
  • Inhibit onset of labor.
  • Support fetal production of adrenal mineralo- and glucosteroids.

Other effects on mother similar to ovarian follicle-progesterone

Estrogens (mainly Estriol) (Also Primarily) Effects on mother similar to ovarian follicle estrogen
Human chorionic gonadotropin HCG Syncytiotrophoblast promote maintenance of corpus luteum during beginning of pregnancy

Inhibit immune response, towards the human embryo.

Human placental lactogen HPL Syncytiotrophoblast increase production of insulin and IGF-1

increase insulin resistance and carbohydrate intolerance

Inhibin Fetal Trophoblasts suppress FSH

Uterus (when pregnant)

Secreted hormone Abbreviation From cells Effect
Prolactin PRL Decidual cells milk production in mammary glands
Relaxin Decidual cells Unclear in humans and animals

Calcium regulation

Endocrine caclcium en.svg

Parathyroid

Secreted hormone Abbreviation From cells Effect
Parathyroid hormone PTH Parathyroid chief cell Calcium:
  • Stimulates Ca2+ release from bone, thereby increasing blood Ca2+
  • Stimulates osteoclasts, thus breaking down bone
  • Stimulates Ca2+ reabsorption in kidney
  • Stimulates activated vitamin D production in kidney


Phosphate:

  • Stimulates PO3-4 release from bones, thereby increasing blood PO3-4.
  • Inhibits PO3-4 reabsorption in kidney, so more PO3-4 is excreted
  • Overall, small net drop in serum PO3-4.

Skin

Secreted hormone From cells Effect
Calcidiol (25-hydroxyvitamin D3) Inactive form of vitamin D3

Miscellaneous

Endocrine miscelaneous en.svg

Heart

Secreted hormone Abbreviation From cells Effect
Atrial-natriuretic peptide ANP Cardiac myocytes Reduce blood pressure by:

reducing systemic vascular resistance, reducing blood water, sodium and fats

Brain natriuretic peptide BNP Cardiac myocytes (To a lesser degree than ANP) reduce blood pressure by:

reducing systemic vascular resistance, reducing blood water, sodium and fats

Bone Marrow

Secreted hormone From cells Effect
Thrombopoietin liver and kidney cells stimulates megakaryocytes to produce platelets[3]

Adipose tissue

Secreted hormone From cells Effect
Leptin (Primarily) Adipocytes decrease of appetite and increase of metabolism.
Estrogens[11] (mainly Estrone) Adipocytes

Major endocrine systems

The human endocrine system consists of several systems that operate via feedback loops. Several important feedback systems are mediated via the hypothalamus and pituitary.[12]

Diseases

Disability-adjusted life year for endocrine disorders per 100,000 inhabitants in 2002.[13]
  no data
  less than 80
  80-160
  160-240
  240-320
  320-400
  400-480
  480-560
  560-640
  640-720
  720-800
  800-1000
  more than 1000

Diseases of the endocrine system are common,[14] including conditions such as diabetes mellitus, thyroid disease, and obesity. Endocrine disease is characterized by disregulated hormone release (a productive pituitary adenoma), inappropriate response to signaling (hypothyroidism), lack of a gland (diabetes mellitus type 1, diminished erythropoiesis in chronic renal failure), or structural enlargement in a critical site such as the thyroid (toxic multinodular goitre). Hypofunction of endocrine glands can occur as a result of loss of reserve, hyposecretion, agenesis, atrophy, or active destruction. Hyperfunction can occur as a result of hypersecretion, loss of suppression, hyperplastic or neoplastic change, or hyperstimulation.

Endocrinopathies are classified as primary, secondary, or tertiary. Primary endocrine disease inhibits the action of downstream glands. Secondary endocrine disease is indicative of a problem with the pituitary gland. Tertiary endocrine disease is associated with dysfunction of the hypothalamus and its releasing hormones.[citation needed]

As the thyroid, and hormones have been implicated in signaling distant tissues to proliferate, for example, the estrogen receptor has been shown to be involved in certain breast cancers. Endocrine, paracrine, and autocrine signaling have all been implicated in proliferation, one of the required steps of oncogenesis.[15]

Other types of signaling

The typical mode of cell signaling in the endocrine system is endocrine signaling. However, there are also other modes, i.e., paracrine, autocrine, and neuroendocrine signaling.[16] Purely neurocrine signaling between neurons, on the other hand, belongs completely to the nervous system.

Autocrine

Autocrine signaling is a form of signaling in which a cell secretes a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on the same cell, leading to changes in the cells.

Paracrine

Paracrine signaling is a form of cell signaling in which the target cell is near the signal-releasing cell.

Juxtacrine

Juxtacrine signaling is a type of intercellular communication that is transmitted via oligosaccharide, lipid, or protein components of a cell membrane, and may affect either the emitting cell or the immediately adjacent cells.

It occurs between adjacent cells that possess broad patches of closely opposed plasma membrane linked by transmembrane channels known as connexons. The gap between the cells can usually be between only 2 and 4 nm.

Unlike other types of cell signaling (such as paracrine and endocrine), juxtacrine signaling requires physical contact between the two cells involved.

Juxtacrine signaling has been observed for some growth factors, cytokine and chemokine cellular signals.

See also

References

  1. ^ Colorado State University - Biomedical Hypertextbooks - Somatostatin
  2. ^ Endo K, Matsumoto T, Kobayashi T, Kasuya Y, Kamata K (February 2005). "Diabetes-related changes in contractile responses of stomach fundus to endothelin-1 in streptozotocin-induced diabetic rats". J Smooth Muscle Res 41 (1): 35–47. doi:10.1540/jsmr.41.35. PMID 15855738. http://www.jstage.jst.go.jp/article/jsmr/41/1/35/_pdf. 
  3. ^ a b c Kaushansky K (May 2006). "Lineage-specific hematopoietic growth factors". N Engl J Med. 354 (19): 2034–45. doi:10.1056/NEJMra052706. PMID 16687716. 
  4. ^ a b Physiology at MCG 5/5ch4/s5ch4_17
  5. ^ Pentikäinen V, Erkkilä K, Suomalainen L, Parvinen M, Dunkel L (May 2000). "Estradiol acts as a germinal cell survival factor in the human testis in vitro". J Clin Endocrinol Metab. 85 (5): 2057–67. doi:10.1210/jc.85.5.2057. PMID 10843196. http://jcem.endojournals.org/cgi/pmidlookup?view=long&pmid=10843196. 
  6. ^ a b c d Placental Hormones
  7. ^ Physiology at MCG 5/5ch9/s5ch9_13
  8. ^ Hould F, Fried G, Fazekas A, Tremblay S, Mersereau W (1988). "Progesterone receptors regulate gallbladder motility". J Surg Res 45 (6): 505–12. doi:10.1016/0022-4804(88)90137-0. PMID 3184927. 
  9. ^ Hormonal Therapy
  10. ^ Massaro D, Massaro GD (2004). "Estrogen regulates pulmonary alveolar formation, loss, and regeneration in mice". American Journal of Physiology. Lung Cellular and Molecular Physiology 287 (6): L1154–9. doi:10.1152/ajplung.00228.2004. PMID 15298854. 
  11. ^ Frühbeck G (July 2004). "The adipose tissue as a source of vasoactive factors". Curr Med Chem Cardiovasc Hematol Agents 2 (3): 197–208. doi:10.2174/1568016043356255. PMID 15320786. http://openurl.ingenta.com/content/nlm?genre=article&issn=1568-0169&volume=2&issue=3&spage=197&aulast=Frühbeck. 
  12. ^ Sherwood, L. (1997). Human Physiology: From Cells to Systems. Wadsworth Pub Co 
  13. ^ "Mortality and Burden of Disease Estimates for WHO Member States in 2002" (xls). World Health Organization. 2002. http://www.who.int/entity/healthinfo/statistics/bodgbddeathdalyestimates.xls. 
  14. ^ Kasper et al. (2005). Harrison's Principles of Internal Medicine. McGraw Hill. pp. 2074. ISBN 0-07-139140-1. 
  15. ^ Bhowmick NA, Chytil A, Plieth D, et al. (February 2004). "TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia". Science 303 (5659): 848–51. doi:10.1126/science.1090922. PMID 14764882. 
  16. ^ University of Virginia - HISTOLOGY OF THE ENDOCRINE GLANDS

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • endocrine system — n the glands and parts of glands that produce endocrine secretions, help to integrate and control bodily metabolic activity, and include esp. the pituitary, thyroid, parathyroids, adrenals, islets of Langerhans, ovaries, and testes * * * the… …   Medical dictionary

  • endocrine system — endocrine system. См. эндокринная система. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) …   Молекулярная биология и генетика. Толковый словарь.

  • endocrine system — Group of ductless glands that secrete hormones necessary for normal growth and development, reproduction, and homeostasis. The major endocrine glands are the hypothalamus, pituitary, thyroid, islets of Langerhans, adrenals, parathyroids, ovaries …   Universalium

  • endocrine system — A system of glands and cells that make hormones that are released directly into the blood and travel to tissues and organs all over the body. The endocrine system controls growth, sexual development, sleep, hunger, and the way the body uses food …   English dictionary of cancer terms

  • endocrine system — noun the system of glands that produce endocrine secretions that help to control bodily metabolic activity • Hypernyms: ↑system • Part Holonyms: ↑body, ↑organic structure, ↑physical structure • Part Meronyms: ↑endocrine gland, ↑ …   Useful english dictionary

  • endocrine system — noun A control system of ductless glands that secrete hormones which circulate via the bloodstream to affect cells within specific organs …   Wiktionary

  • endocrine system, human — ▪ anatomy Introduction  group of ductless glands (gland) that regulate body processes by secreting chemical substances called hormones (hormone). Hormones act on nearby tissues or are carried in the bloodstream to act on specific target organs… …   Universalium

  • Diffuse neuro-endocrine system — The Diffuse Neuro Endocrine System (DNES) consists of cells from the central nervous system (CNS), Peripheral nervous system (PNS) and nearly all organs with the common phenotype: The ability to produce biological active Amines or Peptides which… …   Wikipedia

  • Glands and hormones of the human endocrine system — ▪ Table Glands and hormones of the human endocrine system gland or tissue principal hormone function testis testosterone stimulates development of male sex organs and secondary sex characteristics, including facial hair growth and increased… …   Universalium

  • retrocerebral endocrine system — (ARTHROPODA: Insecta) System comprised of corpora allata, corpora cardiaca and ventral gland …   Dictionary of invertebrate zoology

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”