Thermal Emission Imaging System

Thermal Emission Imaging System

The Thermal Emission Imaging System (THEMIS) is a camera on board the 2001 Mars Odyssey orbiter. It images Mars in the visible and infrared parts of the electromagnetic spectrum in order to determine the thermal properties of the surface and to refine the distribution of minerals on the surface of Mars as determined by the Thermal Emission Spectrometer (TES). Additionally, it helps scientists to understand how the mineralogy of Mars relates to its landforms, and it can be used to search for thermal hotspots in the Martian subsurface.

THEMIS is managed from the Mars Space Flight Facility at Arizona State University and was built by the Santa Barbara Remote Sensing division of Raytheon. The instrument was named after the Greek goddess of justice.

Infrared camera

THEMIS detects thermal infrared energy emitted by the Martian surface at nine different wavelengths. Eight of these have wavelengths between 6 and 13 micrometers, an ideal region of the infrared spectrum to determine thermal energy patterns characteristic of silicate minerals. The ninth band is at 14.9 micrometers and is used to monitor the Martian atmosphere. The shortest infrared wavelength, at 6.78 micrometers, is measured twice in two bands to improve the signal-to-noise ratio. THEMIS is therefore a 10-band instrument that detects nine different wavelengths [http://www.springerlink.com/content/g377365222655653/fulltext.pdf] .

The absorption spectrum measured by THEMIS contains two kinds of information: temperature and emissivity. The temperature contribution to the measurement dominates the spectrum unless the data is corrected. In effect, a THEMIS infrared image taken during the day will look much like a shaded relief map, with slopes facing the sun being bright (hot) and shaded areas being dark (cold). In a THEMIS image taken at night however, thermophysical properties of the surface can be inferred, such as temperature differences due to the materials grain size (thermal inertia).

The effect of temperature can be removed from THEMIS infrared data by dividing the image by a black body curve. The resulting energy pattern is an emissivity spectrum characteristic of the specific minerals (or other things) found on the surface. The presence of minerals such as carbonates, silicates, hydroxides, sulfates, amorphous silica, oxides, and phosphates can be determined from THEMIS measurements.

In particular, this multi-spectral method allows researchers to detect the presence of minerals that form in water and to understand those minerals in their geological context.

The THEMIS infrared camera was designed to be used in conjunction with data from the Thermal Emission Spectrometer (TES), a similar instrument on Mars Global Surveyor. While THEMIS has a very high spatial resolution (100 m) with a low spectral resolution of only 10 bands between 6 and 15 micrometers, TES has a low spatial resolution (3x6 km) with very high spectral resolution of 143 bands between 5 and 50 micrometers.

The instrument's approach provides data on localized deposits associated with volcanoes, hydrothermal processes, and the alteration of minerals by surface and/or subsurface water. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), an Earth orbiting instrument on the Terra spacecraft, has used a similar approach to map the distribution of minerals on Earth. Variations in the thermal infrared false-color image are due to differences in the minerals that make up rocks and soil.

Visible camera

THEMIS has a visible imaging camera that acquires data in five spectral bands, takes images with a spatial resolution of 18 m (59'), and can resolve objects about the size of a semi-trailer. This resolution is intermediate between large-scale images from the Viking Orbiters (150 to 300 meters per pixel) and the high-resolution images from the Mars Orbiter Camera (MOC) on board Mars Global Surveyor (1.5 to 3 meters per pixel).

The THEMIS visible camera's stated purpose is to determine the geological record of past liquid and volcanic environments on Mars. Additionally, this dataset can be used in conjunction with the infrared data to identify potential landing sites for future Mars missions.mars is a nice place to vacation and have fun on the blue planet

pecifications

The Thermal Emission Imaging System weighs 11.2 kilograms (24.7 lb), is 54.5 x 37 x 28.6 cm (21.5 x 14.6 x 11.3 in) and runs on 14 watts of electrical power.

External links

* [http://mars.jpl.nasa.gov/odyssey/mission/instruments.html THEMIS Specifications]
* [http://themis.asu.edu THEMIS instrument site] at Arizona State University
* [http://themis-data.asu.edu Public data releases of THEMIS data]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Chemical imaging — (as quantitative chemical mapping) is the analytical capability to create a visual image of components distribution from simultaneous measurement of spectra and spatial, time informations.[1][2] The main idea for chemical imaging, the analyst may …   Wikipedia

  • Field electron emission — It is requested that a diagram or diagrams be included in this article to improve its quality. For more information, refer to discussion on this page and/or the listing at Wikipedia:Requested images. Field emission (FE) (also known as field… …   Wikipedia

  • THEMIS — Thermal Emission Imaging System (MSP2001) …   Acronyms

  • THEMIS — Thermal Emission Imaging System (MSP2001) …   Acronyms von A bis Z

  • List of astronomy acronyms — This is a compilation of acronyms commonly used in astronomy. Most of the acronyms are drawn from professional astronomy and are used quite frequently in scientific publications. However, a few of these acronyms are frequently used by the general …   Wikipedia

  • Geology of Mars — Mars   Mars as seen by the Hubble Space Telescope Designations …   Wikipedia

  • Géologie de la planète Mars — La géologie de la planète Mars, parfois appelée aréologie[1], recouvre l étude scientifique de Mars et de ses propriétés physiques, de ses reliefs, de sa composition, de son histoire, et de tous les phénomènes qui ont affecté ou affectent encore… …   Wikipédia en Français

  • Photoacoustic imaging in biomedicine — Photoacoustic imaging, as a hybrid biomedical imaging modality, is developed based on the photoacoustic effect. In photoacoustic imaging, non ionizing laser pulses are delivered into biological tissues (when radio frequency pulses are used, the… …   Wikipedia

  • Mars Space Flight Facility — The Mars Space Flight Facility is located at Arizona State University in Tempe, Arizona. The facility is a research center in Arizona State University s School for Earth and Space Exploration. Scientists, researchers, and students there… …   Wikipedia

  • Nuclear thermal rocket — Sketch of nuclear thermal rocket …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”