Cotlar–Stein lemma

Cotlar–Stein lemma

In mathematics, in the field of functional analysis, the Cotlar–Stein almost orthogonality lemma is named after mathematicians Mischa Cotlar and Elias Stein. It may be used to obtain information on the operator norm on an operator, acting from one Hilbert space into another when the operator can be decomposed into almost orthogonal pieces. The original version of this lemma (for self-adjoint and mutually commuting operators) was proved by Mischa Cotlar in 1955[1] and allowed him to conclude that the Hilbert transform is a continuous linear operator in L2 without using the Fourier transform. A more general version was proved by Elias Stein.[2]

Cotlar–Stein almost orthogonality lemma

Let E,\,F be two Hilbert spaces. Consider a family of operators Tj, j\in\mathbb{Z}, with each Tj a continuous linear operator from E to F.

Denote

a_{jk}=\Vert T_j T_k^\ast\Vert_{F\to F},
\qquad b_{jk}=\Vert T_j^\ast T_k\Vert_{E\to E}.

The family of operators T_j:\;E\to F, j\in\mathbb{Z}, is almost orthogonal if

A=\max_{j}\sum_{k}\sqrt{a_{jk}}<\infty,
\qquad B=\max_{j}\sum_{k}\sqrt{b_{jk}}<\infty.

The Cotlar–Stein lemma states that if Tj are almost orthogonal, then the series \sum_{j\in\mathbb{Z}}T_j converges in the strong operator topology, and that

\Vert \sum_{j\in\mathbb{Z}}T_j\Vert_{E\to F}\le\sqrt{AB}.

Example

Here is an example of an orthogonal family of operators. Consider the inifite-dimensional matrices


T=\left[
\begin{array}{cccc}
1&0&0&\vdots\\0&1&0&\vdots\\0&0&1&\vdots\\\cdots&\cdots&\cdots&\ddots\end{array}
\right]

and also


\qquad
T_1=\left[
\begin{array}{cccc}
1&0&0&\vdots\\0&0&0&\vdots\\0&0&0&\vdots\\\cdots&\cdots&\cdots&\ddots\end{array}
\right],
\qquad
T_2=\left[
\begin{array}{cccc}
0&0&0&\vdots\\0&1&0&\vdots\\0&0&0&\vdots\\\cdots&\cdots&\cdots&\ddots\end{array}
\right],
\qquad
T_3=\left[
\begin{array}{cccc}
0&0&0&\vdots\\0&0&0&\vdots\\0&0&1&\vdots\\\cdots&\cdots&\cdots&\ddots\end{array}
\right],
\qquad
\dots.

Then \Vert T_j\Vert=1 for each j, hence the series \sum_{j\in\mathbb{N}}T_j does not converge in the uniform operator topology.

Yet, since \Vert T_j T_k^\ast\Vert=0 and \Vert T_j^\ast T_k\Vert=0 for j\ne k, the Cotlar–Stein almost orthogonality lemma tells us that

T=\sum_{j\in\mathbb{N}}T_j

converges in the strong operator topology and is bounded by 1.

References

  1. ^ Mischa Cotlar, A combinatorial inequality and its application to L2 spaces, Math. Cuyana 1 (1955), 41–55
  2. ^ Elias Stein, Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, 1993. ISBN 0-691-03216-5

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Elias Menachem Stein — Pour les articles homonymes, voir Stein. Elias Stein à Oberwolfach en 2008 Elias Menachem Stein, né le 13 janvier 1931 à Anvers (Belgique) est un …   Wikipédia en Français

  • Elias M. Stein — Infobox Scientist name = Elias M. Stein birth date = Birth date and age|1931|1|13 birth place = Belgium residence = nationality = USA field = Mathematics work institution = Princeton University alma mater = University of Chicago doctoral advisor …   Wikipedia

  • List of lemmas — This following is a list of lemmas (or, lemmata , i.e. minor theorems, or sometimes intermediate technical results factored out of proofs). See also list of axioms, list of theorems and list of conjectures. 0 to 9 *0/1 Sorting Lemma ( comparison… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”