Del in cylindrical and spherical coordinates

Del in cylindrical and spherical coordinates

This is a list of some vector calculus formulae of general use in working with various curvilinear coordinate systems.

Contents

Note

  • This page uses standard physics notation. For spherical coordinates, θ is the angle between the z axis and the radius vector connecting the origin to the point in question. ϕ is the angle between the projection of the radius vector onto the x-y plane and the x axis. Some sources reverse the definitions of θ and ϕ, so the meaning should be inferred from the context.
  • The function atan2(y, x) can be used instead of the mathematical function arctan(y/x) due to its domain and image. The classical arctan(y/x) has an image of (-π/2, +π/2), whereas atan2(y, x) is defined to have an image of (-π, π]. (The expressions for the Del in spherical coordinates may need to be corrected)
Table with the del operator in cylindrical, spherical and parabolic cylindrical coordinates
Operation Cartesian coordinates (x,y,z) Cylindrical coordinates (ρ,φ,z) Spherical coordinates (r,θ,φ) Parabolic cylindrical coordinates (σ,τ,z)
Definition
of
coordinates
\begin{matrix}
    \rho & = & \sqrt{x^2+y^2} \\
    \phi & = & \arctan(y/x) \\
       z & = & z \end{matrix} \begin{matrix}
    x & = & \rho\cos\phi \\
    y & = & \rho\sin\phi \\
    z & = & z \end{matrix} \begin{matrix}
    x & = & r\sin\theta\cos\phi \\
    y & = & r\sin\theta\sin\phi \\
    z & = & r\cos\theta \end{matrix} \begin{matrix}
    x & = & \sigma \tau\\
    y & = & \frac{1}{2} \left( \tau^{2} - \sigma^{2} \right) \\
    z & = & z \end{matrix}
\begin{matrix}
    r      & = & \sqrt{x^2+y^2+z^2} \\
    \theta & = & \arccos(z/r)\\
    \phi   & = & \arctan(y/x) \\ \end{matrix} \begin{matrix}
    r      & = & \sqrt{\rho^2 + z^2} \\
    \theta & = & \arctan{(\rho/z)}\\
    \phi   & = & \phi \end{matrix} \begin{matrix}
    \rho & = & r\sin(\theta) \\
    \phi & = & \phi\\
    z    & = & r\cos(\theta) \end{matrix} \begin{matrix}
    \rho\cos\phi & = & \sigma \tau\\
    \rho\sin\phi & = & \frac{1}{2} \left( \tau^{2} - \sigma^{2} \right) \\
    z & = & z \end{matrix}
Definition
of
unit
vectors
\begin{matrix}
    \boldsymbol{\hat \rho} & = &  \frac{x}{\sqrt{x^2+y^2}}\mathbf{\hat x}+\frac{y}{\sqrt{x^2+y^2}}\mathbf{\hat y} \\
    \boldsymbol{\hat\phi} & = & -\frac{y}{\sqrt{x^2+y^2}}\mathbf{\hat x}+\frac{x}{\sqrt{x^2+y^2}}\mathbf{\hat y} \\
    \mathbf{\hat z}       & = &  \mathbf{\hat z}
    \end{matrix} \begin{matrix}
    \mathbf{\hat x} & = & \cos\phi\boldsymbol{\hat \rho}-\sin\phi\boldsymbol{\hat\phi} \\
    \mathbf{\hat y} & = & \sin\phi\boldsymbol{\hat \rho}+\cos\phi\boldsymbol{\hat\phi} \\
    \mathbf{\hat z} & = & \mathbf{\hat z}
    \end{matrix} \begin{matrix}
    \mathbf{\hat x} & = & \sin\theta\cos\phi\boldsymbol{\hat r}+\cos\theta\cos\phi\boldsymbol{\hat\theta}-\sin\phi\boldsymbol{\hat\phi} \\
    \mathbf{\hat y} & = & \sin\theta\sin\phi\boldsymbol{\hat r}+\cos\theta\sin\phi\boldsymbol{\hat\theta}+\cos\phi\boldsymbol{\hat\phi} \\
    \mathbf{\hat z} & = & \cos\theta        \boldsymbol{\hat r}-\sin\theta        \boldsymbol{\hat\theta} \\
    \end{matrix} \begin{matrix}
    \boldsymbol{\hat \sigma} & = & \frac{\tau}{\sqrt{\tau^2+\sigma^2}}\mathbf{\hat x}-\frac{\sigma}{\sqrt{\tau^2+\sigma^2}}\mathbf{\hat y} \\
    \boldsymbol{\hat\tau}    & = & \frac{\sigma}{\sqrt{\tau^2+\sigma^2}}\mathbf{\hat x}+\frac{\tau}{\sqrt{\tau^2+\sigma^2}}\mathbf{\hat y} \\
    \mathbf{\hat z}          & = & \mathbf{\hat z}
    \end{matrix}
\begin{matrix}
    \mathbf{\hat r}         &=&  \frac{ x }{\sqrt{x^2+y^2+z^2}}\mathbf{\hat x}\!+\!\frac{ y }{\sqrt{x^2+y^2+z^2}}\mathbf{\hat y}\!+\!\frac{z}{\sqrt{x^2+y^2+z^2}}\mathbf{\hat z}\\

    \boldsymbol{\hat\theta} &=&  \frac{ xz }{\sqrt{x^2+y^2+z^2}\sqrt{x^2+y^2}}\mathbf{\hat x}\!+\!\frac{ yz }{\sqrt{x^2+y^2+z^2}\sqrt{x^2+y^2}}\mathbf{\hat y}\!-\!\frac{\sqrt{x^2+y^2}}{\sqrt{x^2+y^2+z^2}}\mathbf{\hat z} \\

    \boldsymbol{\hat\phi}   &=& -\frac{y}{\sqrt{x^2+y^2}}\mathbf{\hat x}+\frac{x}{\sqrt{x^2+y^2}}\mathbf{\hat y}
    \end{matrix} \begin{matrix}
    \mathbf{\hat r}         & = & \frac{\rho}{\sqrt{\rho^2 +z^2}}\boldsymbol{\hat \rho}+\frac{   z}{\sqrt{\rho^2 +z^2}}\mathbf{\hat z} \\
    \boldsymbol{\hat\theta} & = & \frac{z   }{\sqrt{\rho^2 +z^2}}\boldsymbol{\hat \rho}-\frac{\rho}{\sqrt{\rho^2 +z^2}}\mathbf{\hat z} \\
    \boldsymbol{\hat\phi}   & = & \boldsymbol{\hat\phi}
    \end{matrix} \begin{matrix}
    \boldsymbol{\hat \rho} & = & \sin\theta\mathbf{\hat r}+\cos\theta\boldsymbol{\hat\theta} \\
    \boldsymbol{\hat\phi} & = & \boldsymbol{\hat\phi} \\
    \mathbf{\hat z}       & = & \cos\theta\mathbf{\hat r}-\sin\theta\boldsymbol{\hat\theta} \\
    \end{matrix} \begin{matrix}
    \end{matrix}
A vector field \mathbf{A} A_x\mathbf{\hat x} + A_y\mathbf{\hat y} + A_z\mathbf{\hat z} A_\rho\boldsymbol{\hat \rho} + A_\phi\boldsymbol{\hat \phi} + A_z\boldsymbol{\hat z} A_r\boldsymbol{\hat r} + A_\theta\boldsymbol{\hat \theta} + A_\phi\boldsymbol{\hat \phi} A_\sigma\boldsymbol{\hat \sigma} + A_\tau\boldsymbol{\hat \tau} + A_\phi\boldsymbol{\hat z}
Gradient \nabla f {\partial f \over \partial x}\mathbf{\hat x} + {\partial f \over \partial y}\mathbf{\hat y} 
  + {\partial f \over \partial z}\mathbf{\hat z} {\partial f \over \partial \rho}\boldsymbol{\hat \rho} 
  + {1 \over \rho}{\partial f \over \partial \phi}\boldsymbol{\hat \phi} 
  + {\partial f \over \partial z}\boldsymbol{\hat z} {\partial f \over \partial r}\boldsymbol{\hat r} 
  + {1 \over r}{\partial f \over \partial \theta}\boldsymbol{\hat \theta} 
  + {1 \over r\sin\theta}{\partial f \over \partial \phi}\boldsymbol{\hat \phi}  \frac{1}{\sqrt{\sigma^{2} + \tau^{2}}} {\partial f \over \partial \sigma}\boldsymbol{\hat \sigma} + \frac{1}{\sqrt{\sigma^{2} + \tau^{2}}} {\partial f \over \partial \tau}\boldsymbol{\hat \tau} + {\partial f \over \partial z}\boldsymbol{\hat z}
Divergence \nabla \cdot \mathbf{A} {\partial A_x \over \partial x} + {\partial A_y \over \partial y} + {\partial A_z \over \partial z} {1 \over \rho}{\partial \left( \rho A_\rho  \right) \over \partial \rho} 
  + {1 \over \rho}{\partial A_\phi \over \partial \phi} 
  + {\partial A_z \over \partial z} {1 \over r^2}{\partial \left( r^2 A_r \right) \over \partial r} 
  + {1 \over r\sin\theta}{\partial \over \partial \theta} \left(  A_\theta\sin\theta \right)  
  + {1 \over r\sin\theta}{\partial A_\phi \over \partial \phi}  \frac{1}{\sigma^{2} + \tau^{2}}{\partial A_\sigma \over \partial \sigma} + \frac{1}{\sigma^{2} + \tau^{2}}{\partial A_\tau \over \partial \tau} + {\partial A_z \over \partial z}
Curl \nabla \times \mathbf{A} \begin{matrix}
  \displaystyle\left({\partial A_z \over \partial y} - {\partial A_y \over \partial z}\right) \mathbf{\hat x} & + \\
  \displaystyle\left({\partial A_x \over \partial z} - {\partial A_z \over \partial x}\right) \mathbf{\hat y} & + \\
  \displaystyle\left({\partial A_y \over \partial x} - {\partial A_x \over \partial y}\right) \mathbf{\hat z} & \ \end{matrix} \begin{matrix}
  \displaystyle\left({1 \over \rho}{\partial A_z \over \partial \phi}
    - {\partial A_\phi \over \partial z}\right) \boldsymbol{\hat \rho} & + \\
  \displaystyle\left({\partial A_\rho \over \partial z} - {\partial A_z \over \partial \rho}\right) \boldsymbol{\hat \phi} & + \\
  \displaystyle{1 \over \rho}\left({\partial \left( \rho A_\phi \right) \over \partial \rho} 
    - {\partial A_\rho \over \partial \phi}\right) \boldsymbol{\hat z} & \ \end{matrix} \begin{matrix}
  \displaystyle{1 \over r\sin\theta}\left({\partial \over \partial \theta} \left( A_\phi\sin\theta \right)
    - {\partial A_\theta \over \partial \phi}\right) \boldsymbol{\hat r} & + \\
  \displaystyle{1 \over r}\left({1 \over \sin\theta}{\partial A_r \over \partial \phi} 
    - {\partial \over \partial r} \left( r A_\phi \right) \right) \boldsymbol{\hat \theta} & + \\
  \displaystyle{1 \over r}\left({\partial \over \partial r} \left( r A_\theta \right)
    - {\partial A_r \over \partial \theta}\right) \boldsymbol{\hat \phi} & \ \end{matrix} \begin{matrix}
  \displaystyle\left(\frac{1}{\sqrt{\sigma^{2} + \tau^{2}}}{\partial A_z \over \partial \tau}
    - {\partial A_\tau \over \partial z}\right) \boldsymbol{\hat \sigma} & - \\
  \displaystyle\left(\frac{1}{\sqrt{\sigma^{2} + \tau^{2}}}{\partial A_z \over \partial \sigma}- {\partial A_\sigma \over \partial z}\right) \boldsymbol{\hat \tau} & + \\
  \displaystyle\frac{1}{\sqrt{\sigma^{2} + \tau^{2}}}\left({\partial \left( \sqrt{\sigma^{2} + \tau^{2}} A_\sigma \right) \over \partial \tau} 
    - {\partial \left( \sqrt{\sigma^{2} + \tau^{2}} A_\tau \right) \over \partial \sigma}\right) \boldsymbol{\hat z} & \ \end{matrix}
Laplace operator \Delta f = \nabla^2 f {\partial^2 f \over \partial x^2} + {\partial^2 f \over \partial y^2} + {\partial^2 f \over \partial z^2} {1 \over \rho}{\partial \over \partial \rho}\left(\rho {\partial f \over \partial \rho}\right) 
  + {1 \over \rho^2}{\partial^2 f \over \partial \phi^2} 
  + {\partial^2 f \over \partial z^2} {1 \over r^2}{\partial \over \partial r}\!\left(r^2 {\partial f \over \partial r}\right) 
  \!+\!{1 \over r^2\!\sin\theta}{\partial \over \partial \theta}\!\left(\sin\theta {\partial f \over \partial \theta}\right) 
  \!+\!{1 \over r^2\!\sin^2\theta}{\partial^2 f \over \partial \phi^2}  \frac{1}{\sigma^{2} + \tau^{2}} 
\left(  \frac{\partial^{2} f}{\partial \sigma^{2}} + 
\frac{\partial^{2} f}{\partial \tau^{2}} \right) +
\frac{\partial^{2} f}{\partial z^{2}}
Vector Laplacian \Delta \mathbf{A} = \nabla^2 \mathbf{A} \Delta A_x \mathbf{\hat x} + \Delta A_y \mathbf{\hat y} + \Delta A_z \mathbf{\hat z} \begin{matrix}
  \displaystyle\left(\Delta A_\rho - {A_\rho \over \rho^2} 
    - {2 \over \rho^2}{\partial A_\phi \over \partial \phi}\right) \boldsymbol{\hat \rho} & + \\
  \displaystyle\left(\Delta A_\phi - {A_\phi \over \rho^2} 
    + {2 \over \rho^2}{\partial A_\rho \over \partial \phi}\right) \boldsymbol{\hat\phi} & + \\
  \displaystyle\left(\Delta A_z \right) \boldsymbol{\hat z}  & \ \end{matrix} \begin{matrix}
  \left(\Delta A_r - {2 A_r \over r^2} 
    - {2 \over r^2\sin\theta}{\partial \left(A_\theta \sin\theta\right) \over \partial\theta}
    - {2 \over r^2\sin\theta}{\partial A_\phi \over \partial \phi}\right) \boldsymbol{\hat r} & + \\
  \left(\Delta A_\theta - {A_\theta \over r^2\sin^2\theta} 
    + {2 \over r^2}{\partial A_r \over \partial \theta} 
    - {2 \cos\theta \over r^2\sin^2\theta}{\partial A_\phi \over \partial \phi}\right) \boldsymbol{\hat\theta} & + \\
  \left(\Delta A_\phi - {A_\phi \over r^2\sin^2\theta}
    + {2 \over r^2\sin\theta}{\partial A_r \over \partial \phi}
    + {2 \cos\theta \over r^2\sin^2\theta}{\partial A_\theta \over \partial \phi}\right) \boldsymbol{\hat\phi} & \end{matrix}
Material derivative

[1] (\mathbf{A} \cdot \nabla) \mathbf{B}


\begin{matrix}
\displaystyle\left(A_x \frac{\partial B_x}{\partial x}+A_y \frac{\partial B_x}{\partial y} + A_z \frac{\partial B_x}{\partial z}\right)\boldsymbol{\hat{x}} & + \\
\displaystyle\left(A_x \frac{\partial B_y}{\partial x}+A_y \frac{\partial B_y}{\partial y} + A_z \frac{\partial B_y}{\partial z}\right)\boldsymbol{\hat{y}} & + \\
\displaystyle\left(A_x \frac{\partial B_z}{\partial x}+A_y \frac{\partial B_z}{\partial y} + A_z \frac{\partial B_z}{\partial z}\right)\boldsymbol{\hat{z}}
\end{matrix}


\begin{matrix}
\left(A_\rho \frac{\partial B_\rho}{\partial \rho}+\frac{A_\phi}{\rho}\frac{\partial B_\rho}{\partial \phi}+A_z\frac{\partial B_\rho}{\partial z}-\frac{A_\phi B_\phi}{\rho}\right) \boldsymbol{\hat\rho} \!+\!\\
\left(A_\rho \frac{\partial B_\phi}{\partial \rho}+\frac{A_\phi}{\rho}\frac{\partial B_\phi}{\partial \phi}+A_z\frac{\partial B_\phi}{\partial z}+\frac{A_\phi B_\rho}{\rho}\right) \boldsymbol{\hat\phi}\!+\!\\
\left(A_\rho \frac{\partial B_z   }{\partial \rho}+\frac{A_\phi}{\rho}\frac{\partial B_z   }{\partial \phi}+A_z\frac{\partial B_z   }{\partial z}                           \right) \boldsymbol{\hat z}
\end{matrix}


\begin{matrix}
\left(A_r \frac{\partial B_r}{\partial r}\!+\!\frac{A_\theta}{r}\frac{\partial B_r}{\partial \theta}\!+\!\frac{A_\phi}{r\sin(\theta)}\frac{\partial B_r}{\partial \phi}\!-\!\frac{A_\theta B_\theta\!+\!A_\phi B_\phi}{r}\right)                  \boldsymbol{\hat r} \!+\!\\
\left(A_r \frac{\partial B_\theta}{\partial r}\!+\!\frac{A_\theta}{r}\frac{\partial B_\theta}{\partial \theta}\!+\!\frac{A_\phi}{r\sin(\theta)}\frac{\partial B_\theta}{\partial \phi}\!+\!\frac{A_\theta B_r}{r}-\frac{A_\phi B_\phi\cot(\theta)}{r}\right)  \boldsymbol{\hat\theta} \!+\!\\
\left(A_r \frac{\partial B_\phi}{\partial r}\!+\!\frac{A_\theta}{r}\frac{\partial B_\phi}{\partial \theta}\!+\!\frac{A_\phi}{r\sin(\theta)}\frac{\partial B_\phi}{\partial \phi}\!+\!\frac{A_\phi B_r}{r}\!+\!\frac{A_\phi B_\theta \cot(\theta)}{r}\right)\boldsymbol{\hat\phi}
\end{matrix}
Differential displacement d\mathbf{l} = dx\mathbf{\hat x} + dy\mathbf{\hat y} + dz\mathbf{\hat z} d\mathbf{l} = d\rho\boldsymbol{\hat \rho} + \rho d\phi\boldsymbol{\hat \phi} + dz\boldsymbol{\hat z} d\mathbf{l} = dr\mathbf{\hat r} + rd\theta\boldsymbol{\hat \theta} + r\sin\theta d\phi\boldsymbol{\hat \phi} d\mathbf{l} = \sqrt{\sigma^{2} + \tau^{2}} d\sigma\boldsymbol{\hat \sigma} + \sqrt{\sigma^{2} + \tau^{2}} d\tau\boldsymbol{\hat \tau} + dz\boldsymbol{\hat z}
Differential normal area \begin{matrix}d\mathbf{S} = &dy\,dz\,\mathbf{\hat x} + \\ 
&dx\,dz\,\mathbf{\hat y} + \\ 
&dx\,dy\,\mathbf{\hat z}\end{matrix} \begin{matrix}
d\mathbf{S} = & \rho\, d\phi\, dz\,\boldsymbol{\hat \rho} + \\ 
& d\rho \,dz\,\boldsymbol{\hat \phi} + \\ 
& \rho \,d\rho d\phi \,\mathbf{\hat z}
\end{matrix} \begin{matrix}
d\mathbf{S} = & r^2 \sin\theta \,d\theta \,d\phi \,\mathbf{\hat r} + \\
& r\sin\theta \,dr\,d\phi \,\boldsymbol{\hat \theta} + \\
& r\,dr\,d\theta\,\boldsymbol{\hat \phi}
\end{matrix} \begin{matrix}
d\mathbf{S} = & \sqrt{\sigma^{2} + \tau^{2}}, d\tau\, dz\,\boldsymbol{\hat \sigma} + \\ 
& \sqrt{\sigma^{2} + \tau^{2}} d\sigma\,dz\,\boldsymbol{\hat \tau} + \\ 
& \sigma^{2} + \tau^{2} d\sigma, d\tau \,\mathbf{\hat z}
\end{matrix}
Differential volume dV = dx\,dy\,dz \, dV = \rho\, d\rho\, d\phi\, dz\, dV = r^2\sin\theta \,dr\,d\theta\, d\phi\, dV = \left( \sigma^{2} + \tau^{2} \right) d\sigma d\tau dz,
Non-trivial calculation rules:
  1. \operatorname{div\ grad\ } f = \nabla \cdot (\nabla f) = \nabla^2 f = \Delta f (Laplacian)
  2. \operatorname{curl\ grad\ } f = \nabla \times (\nabla f) = \mathbf{0}
  3. \operatorname{div\ curl\ } \mathbf{A} = \nabla \cdot (\nabla \times \mathbf{A}) = 0
  4. \operatorname{curl\ curl\ } \mathbf{A} = \nabla \times (\nabla \times \mathbf{A}) 
                                                = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} (using Lagrange's formula for the cross product)
  5. \Delta f g = f \Delta g + 2 \nabla f \cdot \nabla g + g \Delta f

References

  1. ^ Weisstein, Eric W.. "Convective Operator". Mathworld. http://mathworld.wolfram.com/ConvectiveOperator.html. Retrieved 23 March 2011. 

See also

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Vector fields in cylindrical and spherical coordinates — Cylindrical coordinate system = Vector fields Vectors are defined in cylindrical coordinates by (ρ,φ,z), where * ρ is the length of the vector projected onto the X Y plane, * φ is the angle of the projected vector with the positive X axis (0 ≤ φ… …   Wikipedia

  • Cylindrical coordinate system — A cylindrical coordinate system with origin O, polar axis A, and longitudinal axis L. The dot is the point with radial distance ρ = 4, angular coordinate φ = 130°, and height z = 4. A cylindrical coordinate system is …   Wikipedia

  • Spherical coordinate system — In mathematics, the spherical coordinate system is a coordinate system for representing geometric figures in three dimensions using three coordinates: the radial distance of a point from a fixed origin, the zenith angle from the positive z axis… …   Wikipedia

  • Del — For other uses, see Del (disambiguation). ∇ Del operator, represented by the nabla symbol In vector calculus, del is a vector differential operator, usually represented by the nabla symbol . When applied to a function defined on a one dimensional …   Wikipedia

  • Spherical harmonics — In mathematics, the spherical harmonics are the angular portion of an orthogonal set of solutions to Laplace s equation represented in a system of spherical coordinates. Spherical harmonics are important in many theoretical and practical… …   Wikipedia

  • Curvilinear coordinates — Curvilinear, affine, and Cartesian coordinates in two dimensional space Curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian… …   Wikipedia

  • Curl (mathematics) — Topics in Calculus Fundamental theorem Limits of functions Continuity Mean value theorem Differential calculus  Derivative Change of variables Implicit differentiation Taylor s theorem Related rates …   Wikipedia

  • Divergence — For other uses, see Divergence (disambiguation). Topics in Calculus Fundamental theorem Limits of functions Continuity Mean value theorem Differential calculus  Derivative Change of variables Implicit differentiation …   Wikipedia

  • Laplace operator — This article is about the mathematical operator. For the Laplace probability distribution, see Laplace distribution. For graph theoretical notion, see Laplacian matrix. Del Squared redirects here. For other uses, see Del Squared (disambiguation) …   Wikipedia

  • Orthogonal coordinates — In mathematics, orthogonal coordinates are defined as a set of d coordinates q = (q1, q2, ..., qd) in which the coordinate surfaces all meet at right angles (note: superscripts are indices, not exponents). A coordinate surface for a particular… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”