Photorefractive effect

Photorefractive effect

The photorefractive effect is a nonlinear optical effect seen in certain crystals and other materials that respond to light by altering their refractive indexcite book
author=J. Frejlich
title=Photorefractive materials : fundamental concepts, holographic recording and materials characterization.
isbn=9780471748663/0471748668
year=2007
] .The effect can be used to store temporary, erasable holograms and is useful for holographic data storagecite book
editor=Peter Günter, Jean-Pierre Huignard
title=Photorefractive materials and their applications
isbn=0387344438/9780387344430
year=2007
] [cite book
title=Introduction to photorefractive nonlinear optics
author=Pochi Yeh
year=1993
isbn=0471586927
publisher=Wiley series in pure and applied optics
] .It can also be used to create a phase-conjugate mirror or an optical spatial soliton.

Mechanism

The photorefractive effect occurs in several stages:
#A photorefractive material is illuminated by coherent beams of light. (In holography, these would be the signal and reference beams). Interference between the beams results in a pattern of dark and light fringes throughout the crystal.
#In regions where a bright fringe is present, electrons can absorb the light and be photoexcited from an impurity level into the conduction band of the material, leaving an electron hole (a net positive charge). Impurity levels have an energy intermediate between the energies of the valence band and conduction band of the material.
#Once in the conduction band, the electrons are free to move and diffuse throughout the crystal. Since the electrons are being excited preferentially in the bright fringes, the net electron drift is towards the dark-fringe regions of the material.
#While in the conduction band, the electrons may with some probability recombine with the holes and return to the impurity levels. The rate at which this recombination takes place determines how far the electrons diffuse, and thus the overall strength of the photorefractive effect in that material. Once back in the impurity level, the electrons are trapped and can no longer move unless re-excited back into the conduction band (by light).
#With the net redistribution of electrons into the dark regions of the material, leaving holes in the bright areas, the resulting charge distribution causes an electric field, known as a "space charge field" to be set up in the crystal. Since the electrons and holes are trapped and immobile, the space charge field persists even when the illuminating beams are removed.
#The internal space charge field, via the electro-optic effect, causes the refractive index of the crystal to change in the regions where the field is strongest. This causes a spatially varying refractive index grating to occur throughout the crystal. The pattern of the grating that is formed follows the light interference pattern originally imposed on the crystal.
#The refractive index grating can now diffract light shone into the crystal, with the resulting diffraction pattern recreating the original pattern of light stored in the crystal.

Application

Photorefractive effect can be used for the dynamic holography, and, in particular, for cleaning of the coherent beams. For example, in the case of a hologram, illuminating the grating with just the reference beam causes the reconstruction of the original signal beam. When two coherent laser beams (usually obtained by splitting a laser beam by the use of a beamsplitter into two and then suitably redirected by mirrors) cross inside a photorefractive crystal, the resultant refractive index grating diffracts the laser beams. As a result, one beam gains energy and becomes more intense at the expense of light intensity reduction of the other. This phenomenon is an example of two-wave mixing. It is interesting that in this configuration, Bragg diffraction condition is automatically satisfied.

The pattern stored inside the crystal persists until the pattern is erased; this can be done by flooding the crystal with uniform illumination which will excite the electrons back into the conduction band and allow them to be distributed more uniformly.

Photorefractive materials include barium titanate (BaTiO3), lithium niobate (LiNbO3), certain photopolymers, and some multiple quantum well structures.

There were even claims that the amplifier based on the photorefractive crystals can beat the quantum limit of noise,typical for the optical amplifiers of any kind.

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Electro-optic effect — An electro optic effect is a change in the optical properties of a material in response to an electric field that varies slowly compared with the frequency of light. The term encompasses a number of distinct phenomena, which can be subdivided… …   Wikipedia

  • List of effects — This is a list of names for observable phenonema that contain the word effect, amplified by reference(s) to their respective fields of study. #*3D audio effect (audio effects)A*Accelerator effect (economics) *Accordion effect (physics) (waves)… …   Wikipedia

  • Laser video projector — A laser video projector takes a video signal and modulates a laser beam in order to project a raster based image. The systems work either by scanning the entire picture a dot at a time and modulating the laser directly at high frequency, much… …   Wikipedia

  • Barium titanate — Chembox new Name = Barium titanate ImageFile = ImageName = Barium titanate OtherNames = Section1 = Chembox Identifiers CASNo = 12047 27 7 Section2 = Chembox Properties Formula = BaTiO3 MolarMass = 233.192 g/mol Appearance = white crystals Density …   Wikipedia

  • Nonlinear optics — (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the dielectric polarization P responds nonlinearly to the electric field E of the light. This nonlinearity is typically only observed… …   Wikipedia

  • List of optical topics — Probably some Wikipedia articles on topics in optics are not yet listed on this page. If you cannot find the topic you are interested in on this page, the article may nonetheless exist; you can try to find it using the Search box, or look in and… …   Wikipedia

  • Index of optics articles — Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it.[1] Optics usually describes the behavior of visible,… …   Wikipedia

  • Holographic data storage — is a potential replacement technology in the area of high capacity data storage currently dominated by magnetic and conventional optical data storage. Magnetic and optical data storage devices rely on individual bits being stored as distinct… …   Wikipedia

  • Retroreflector — Infobox Laboratory equipment name = Retroreflector caption = A gold corner cube retroreflector acronym = other names = uses = Distance measurement by optical delay line inventor = manufacturer = model = related = A retroreflector (sometimes… …   Wikipedia

  • PR — Contents 1 Business and Organisations 2 Ecclesiastical 3 Computing …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”