Circumference
When a circle's radius is 1 unit, its circumference is 2π units
Circumference = π × diameter

The circumference is the distance around a closed curve. Circumference is a special perimeter.

Contents

Circumference of a circle

The circumference of a circle is the length around it. The circumference of a circle can be calculated from its diameter using the formula:

c=\pi\cdot{d}.\,\!

Or, substituting the radius for the diameter:

c=2\pi\cdot{r}=\pi\cdot{2r},\,\!

where r is the radius and d is the diameter of the circle, and the Greek letter π is defined as the ratio of the circumference of the circle to its diameter. The numerical value of π is 3.141 592 653 589 793....

Circumference of an ellipse

The circumference of an ellipse is more problematic, as the exact solution requires finding the complete elliptic integral of the second kind. This can be achieved either via numerical integration (the best type being Gaussian quadrature) or by one of many binomial series expansions.

Where a,b are the ellipse's semi-major and semi-minor axes, respectively, and α is the ellipse's angular eccentricity,

\alpha=\arccos\!\left(\frac{b}{a}\right)=2\arctan\!\left(\!\sqrt{\frac{a-b}{a+b}}\,\right);\,\!

\begin{align}\mbox{E2}\left[0,90^\circ\right]&= \mbox{Integral}'s\mbox{ divided difference};\\ Pr&=a\times\mbox{E2}\left[0,90^\circ\right] \quad(\mbox{perimetric radius});\\
c&=2\pi\times Pr.\end{align}\,\!

There are many different approximations for the E2 [0,90°] divided difference, with varying degrees of sophistication and corresponding accuracy.

In comparing the different approximations, the \tan^2\!\left(\frac{\alpha}{2}\right)\,\! (also known as "n", the third flattening of the ellipse) based series expansion is used to find the actual value:

\begin{align}\mbox{E2}\left[0,90^\circ\right]
&=\cos^2\!\left(\frac{\alpha}{2}\right)\frac{1}{UT}\sum_{TN=1}^{UT=\infty}{.5\choose{}TN}^2\tan^{4TN}\!\left(\frac{\alpha}{2}\right),\\
&=\cos^2\!\left(\frac{\alpha}{2}\right)\Bigg(1+\frac{1}{4}\tan^4\!\left(\frac{\alpha}{2}\right)
+\frac{1}{64}\tan^8\!\left(\frac{\alpha}{2}\right)\\ &\qquad\qquad\qquad\;\,+\frac{1}{256}\tan^{12}\!\left(\frac{\alpha}{2}\right)
+\frac{25}{16384}\tan^{16}\!\left(\frac{\alpha}{2}\right)
+...\Bigg);\end{align}\,\!

More generally, the arc length of a portion of the circumference, as a function of the angle subtended, is given by an incomplete elliptic integral.

The inverse function, the angle subtended as a function of the arc length, is given by the elliptic functions.

Muir-1883

Probably the most accurate to its given simplicity is Thomas Muir's:
\begin{align}Pr
&\approx\left(\frac{a^{1.5}+b^{1.5}}{2}\right)^\frac{1}{1.5}=a\left(\frac{2+\cos^{3}\!\left(\alpha\right)}{2}\right)^\frac{2}{3},\\
&\quad\approx{a}\times\cos^2\!\left(\frac{\alpha}{2}\right)\left(1+\frac{1}{4}\tan^4\!\left(\frac{\alpha}{2}\right)\right).\end{align}\,\!

Ramanujan-1914 (#1,#2)

Srinivasa Ramanujan introduced two different approximations, both from 1914
\begin{align}1.\;Pr&\approx\frac{1}{2}\Big(3(a+b)-\sqrt{\big(3a+b\big)\big(a+3b\big)}\Big),\\
&\quad=\frac{a}{2}\bigg(6\cos^2\!\left(\frac{\alpha}{2}\right)-\sqrt{\big(3+\cos\!\left(\alpha\right)\big)\big(1+3\cos\!\left(\alpha\right)\big)}\bigg);\end{align}\,\!
\begin{align}2.\;Pr&\approx\frac{1}{2}\Big(a+b\Big)\Bigg(1+\frac{3\big(\frac{a-b}{a+b}\big)^2}{10+\sqrt{4-3\big(\frac{a-b}{a+b}\big)^2}}\Bigg);\\
&\quad=a\times\cos^2\!\left(\frac{\alpha}{2}\right)\Bigg(1+\frac{3\tan^4\!\big(\frac{\alpha}{2}\big)}{10+\sqrt{4-3\tan^4\!\big(\frac{\alpha}{2}\big)}}\Bigg).\end{align}\,\!
The second equation is demonstrably by far the better of the two, and may be the most accurate approximation known.

Letting a = 10000 and b = a×cos{}, results with different ellipticities can be found and compared:

b Pr Ramanujan-#2 Ramanujan-#1 Muir
9975  9987.50391 11393   9987.50391 11393   9987.50391 11393   9987.50391 11389
9966  9983.00723 73047  9983.00723 73047  9983.00723 73047  9983.00723 73034
9950  9975.01566 41666  9975.01566 41666  9975.01566 41666  9975.01566 41604
9900  9950.06281 41695  9950.06281 41695  9950.06281 41695  9950.06281 40704
9000  9506.58008 71725  9506.58008 71725  9506.58008 67774  9506.57894 84209
8000  9027.79927 77219  9027.79927 77219  9027.79924 43886  9027.77786 62561
7500  8794.70009 24247  8794.70009 24240  8794.69994 52888  8794.64324 65132
6667  8417.02535 37669  8417.02535 37460  8417.02428 62059  8416.81780 56370
5000  7709.82212 59502  7709.82212 24348  7709.80054 22510  7708.38853 77837
3333  7090.18347 61693  7090.18324 21686  7089.94281 35586  7083.80287 96714
2500  6826.49114 72168  6826.48944 11189  6825.75998 22882  6814.20222 31205
1000  6468.01579 36089  6467.94103 84016  6462.57005 00576  6431.72229 28418
 100  6367.94576 97209  6366.42397 74408  6346.16560 81001  6303.80428 66621
  10  6366.22253 29150  6363.81341 42880  6340.31989 06242  6299.73805 61141
   1  6366.19804 50617  6363.65301 06191  6339.80266 34498  6299.60944 92105
iota  6366.19772 36758  6363.63636 36364  6339.74596 21556  6299.60524 94744

Circumference of a graph

In graph theory the circumference of a graph refers to the longest cycle contained in that graph.

External links


Wikimedia Foundation. 2010.

Synonyms:

Look at other dictionaries:

  • circumference — circumference, perimeter, periphery, circuit, compass are comparable because all in their basic senses denote a continuous line enclosing an area or space. They differ, however, in the extent to which they retain this meaning and in the number… …   New Dictionary of Synonyms

  • Circumference — Cir*cum fer*ence, n. [L. circumferentia.] [1913 Webster] 1. The line that goes round or encompasses a circular figure; a periphery. Millon. [1913 Webster] 2. A circle; anything circular. [1913 Webster] His ponderous shield . . . Behind him cast.… …   The Collaborative International Dictionary of English

  • circumference — [sər kum′fər əns, sər kum′frəns] n. [ME < L circumferentia < circumferens, prp. of circumferre < circum, around + ferre, to carry, BEAR1] 1. the line bounding a circle, a rounded surface, or an area suggesting a circle: see CIRCLE 2. the …   English World dictionary

  • Circumference — Cir*cum fer*ence, v. t. To include in a circular space; to bound. [Obs.] Sir T. Browne. [1913 Webster] …   The Collaborative International Dictionary of English

  • circumference — index ambit, border, contour (outline), margin (outside limit), outline (boundary), periphery, zone …   Law dictionary

  • circumference — (n.) late 14c., from L. circumferentia, neuter plural of circumferens (loan translation of Gk. periphereia periphery, the line round a circular body, lit. a carrying round ), prp. of circumferre to lead round, take round, from circum around (see… …   Etymology dictionary

  • circumference — [n] edge, perimeter ambit, border, boundary, bounds, circuit, compass, confines, extremity, fringe, girth, limits, lip, margin, outline, periphery, rim, verge; concept 484 Ant. inside, interior, middle …   New thesaurus

  • circumference — ► NOUN 1) the enclosing boundary of a circle. 2) the distance around something. DERIVATIVES circumferential adjective. ORIGIN Latin circumferentia, from circum around + ferre carry …   English terms dictionary

  • circumference — noun VERB + CIRCUMFERENCE ▪ have ▪ calculate, measure ▪ to measure the circumference of a circle PREPOSITION ▪ in circumfe …   Collocations dictionary

  • circumference — [[t]sə(r)kʌ̱mfrəns[/t]] 1) N UNCOUNT The circumference of a circle, place, or round object is the distance around its edge. ...a scientist calculating the earth s circumference... The island is 3.5 km in circumference. 2) N UNCOUNT The… …   English dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”