Riesz's lemma

Riesz's lemma

Riesz's lemma is an lemma in functional analysis. It specifies (often easy to check) conditions which guarantee that a subspace in a normed linear space is dense.

The result

Before stating the result, we fix some notation. Let "X" be a normed linear space with norm |·| and "x" be an element of "X". Let "Y" be a subspace in "X". The distance between an element "x" and "Y" is defined by

:d(x, Y) = inf_{y in Y} |x - y|.

Riesz's lemma reads as follows:

: Let "X" be a normed linear space and "Y" be a subspace in "X". If there exists 0 < "r" < 1 such that for every "x" &isin; "X" with |"x"| =1, one has "d"("x", "Y") < r, then "Y" is dense in "X".

In other words, for every proper closed subspace "Y", one can always find a vector "x" on the unit sphere of "X" such that "d"("x", "Y") is less than and arbitrarily close to 1.

Proof: A simple proof can be sketched as follows. Suppose "Y" is not dense in "X", therefore the closure of "Y", denoted by " Y' ", is a proper subspace of "X". Take an element "x" not in " Y' ", then we have

:; d(x, Y') = d > 0

So, for any "k" > 1, there exists "y"0 in " Y' " such that

:d leq | x - y_0 | < kd .

Consider the vector z = "x" - "y"0. We can calculate directly

:left|frac{z} |(x - y_0) - y| > frac{1} d > frac{1}{k}

for any "y" in "Y". Choosing "k" arbitrarily close to 1 finishes the proof.

Note

For the finite dimensional case, equality can be achieved. In other words, there exists "x" of unit norm such that "d"("x", "Y") is 1. When dimension of "X" is finite, the unit ball "B" &sub; "X" is compact. Also, the distance function "d"(&middot; , "Y") is continuous. Therefore its image on the unit ball "B" must be a compact subset of the real line, and this proves the claim.

On the other hand, the example of the space "l"&infin; of all bounded sequences shows that the lemma does not hold for "k" = 1.

Converse

Riesz's lemma can be applied directly to show that the unit ball of an infinite-dimensional normed space "X" is never compact: Take an element "x"1 from the unit sphere. Pick "x""n" from the unit sphere such that

:d(x_n, Y_{n-1}) > k for a constant 0 < "k" < 1, where "Y""n-1" is the linear span of {"x"1 ... "x""n-1"}.

Clearly {"x""n"} contains no convergent subsequence and the noncompactness of the unit ball follows.

The converse of this, in a more general setting, is also true. If a topological vector space "X" is locally compact, then it is finite dimensional. Therefore local compactness characterizes finite-dimensionality. This classical result is also attributed to Riesz. A short proof can be sketched as follows: let "C" be a compact neighborhood of 0 &isin; "X". By compactness, there is "c"1 ... "cn" &isin; "C" such that

:C = igcup_{i=1}^n ; left( c_i + frac{1}{2} C ight).

We claim that the finite dimenional subspace "Y" spanned by {"ci"}, or equivalently, its closure, is "X". Since scalar multiplication is continuous, its enough to show "C" &sub; "Y". Now, by induction,

:C sub Y + frac{1}{2^m} C

for every "m". But compact sets are bounded, so "C" lies in the closure of "Y". This proves the result.

Some consequences

The spectral properties of compact operators acting on a Banach space are similar to those of matrices. Riesz's lemma is essential in establishing this fact.

Riesz's lemma guarantees that any infinite-dimensional normed space contains a sequence of unit vectors x_n with |x_n - x_m| > k for 0 < "k" < 1. This is useful in showing the non existence of certain measures on infinite-dimensional Banach spaces.


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Riesz — ist der Familienname der Brüder und ungarischen Mathematiker Frigyes Riesz (1880–1956) und Marcel Riesz (1886–1969). Nach Frigyes Riesz benannt sind Riesz Raum Lemma von Riesz Rieszscher Darstellungssatz Vollständigkeitssatz von Riesz Satz von… …   Deutsch Wikipedia

  • Lemma (mathematics) — In mathematics, a lemma (plural lemmata or lemmascite book |last= Higham |first= Nicholas J. |title= Handbook of Writing for the Mathematical Sciences |publisher= Society for Industrial and Applied Mathematics |year= 1998 |isbn= 0898714206 |pages …   Wikipedia

  • Lemma von Riesz — Das Lemma von Riesz, benannt nach dem ungarischen Mathematiker Frigyes Riesz, ist ein Satz der Funktionalanalysis über abgeschlossene Unterräume von normierten Räumen. Inhaltsverzeichnis 1 Aussage 2 Motivation 3 Beweis …   Deutsch Wikipedia

  • Lemma von Lax-Milgram — Das Lemma von Lax Milgram, auch Satz von Lax Milgram, ist eine Aussage der Funktionalanalysis, einem Teilgebiet der Mathematik, die nach Peter Lax und Arthur Milgram benannt ist. Diese beiden Mathematiker bewiesen 1954 eine erste Version dieses… …   Deutsch Wikipedia

  • Rising sun lemma — In mathematical analysis, the rising sun lemma is a lemma due to Frigyes Riesz, used in the proof of the Hardy Littlewood maximal theorem. The lemma quickly gives a proof of the one dimensional Calderón Zygmund lemma, a fundamental result in… …   Wikipedia

  • Rieszsches Lemma — Das Lemma von Riesz, benannt nach dem ungarischen Mathematiker Frigyes Riesz, ist ein Satz der Funktionalanalysis über abgeschlossene Unterräume von normierten Räumen. Gegeben seien ein normierter Raum X, ein abgeschlossener echter Unterraum U… …   Deutsch Wikipedia

  • Darstellungssatz von Riesz — Der rieszsche Darstellungssatz (nach Frigyes Riesz) charakterisiert in der Mathematik den Dualraum der Banachräume Lp, beziehungsweise in seiner Version auf C0(X) dem Dualraum der stetigen Funktionen auf einem lokalkompaktem Hausdorff Raum. Er… …   Deutsch Wikipedia

  • Satz von Riesz-Fischer — Der rieszsche Darstellungssatz (nach Frigyes Riesz) charakterisiert in der Mathematik den Dualraum der Banachräume Lp, beziehungsweise in seiner Version auf C0(X) dem Dualraum der stetigen Funktionen auf einem lokalkompaktem Hausdorff Raum. Er… …   Deutsch Wikipedia

  • Satz von Fischer-Riesz — Der Satz von Fischer Riesz ist eine Aussage aus der Funktionalanalysis. Ernst Sigismund Fischer und von Frigyes Riesz bewiesen im Jahr 1907[1] unabhängig voneinander diesen Satz. Aus diesem Grund trägt die Aussage ihre Namen. In der Literatur… …   Deutsch Wikipedia

  • List of mathematics articles (R) — NOTOC R R. A. Fisher Lectureship Rabdology Rabin automaton Rabin signature algorithm Rabinovich Fabrikant equations Rabinowitsch trick Racah polynomials Racah W coefficient Racetrack (game) Racks and quandles Radar chart Rademacher complexity… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”