BCS theory

BCS theory is a microscopic theory of superconductivity, proposed by Bardeen, Cooper, and Schrieffer. It describes superconductivity as a microscopic effect caused by Bose condensation of pairs of electrons.

History

BCS theory was developed in 1957 by John Bardeen, Leon Cooper, and Robert Schrieffer and they received the Nobel Prize in Physics in 1972 for this theory.

In 1986, "high-temperature superconductivity" was discovered (i.e. superconductivity at temperatures considerably above the previous limit of about 30 K; up to about 130 K). It is believed that at these temperatures other effects are at play; these effects are not yet fully understood. (It is possible that these unknown effects also control superconductivity even at low temperatures for somematerials).

Overview

In the BCS framework, superconductivity is a macroscopic effect which results from Bose condensation of electron (Cooper) pairs. These behave as bosons which, at sufficiently low temperature, form a large Bose-Einstein condensate. At sufficiently low temperatures, electrons near the Fermi surface become unstable against the formation of cooper pairs. Cooper showed such binding will occur in the presence of an attractive potential, no matter how weak. In conventional superconductors, such binding is generally attributed to an electron-lattice interaction. The BCS theory, however, requires only that the potential be attractive, regardless of its origin. Superconductivity was simultaneously explained by Nikolay Bogoliubov, by means of the so-called Bogoliubov transformations.

In many superconductors, the attractive interaction between electrons (necessary for pairing) is brought about indirectly by the interaction between the electrons and the vibrating crystal lattice (the phonons). Roughly speaking the picture is the following:

An electron moving through a conductor will attract nearby positive charges in the lattice. This deformation of the lattice causes another electron, with opposite "spin", to move into the region of higher positive charge density. The two electrons are then held together with a certain binding energy. If this binding energy is higher than the energy provided by kicks from oscillating atoms in the conductor (which is true at low temperatures), then the electron pair will stick together and resist all kicks, thus not experiencing resistance.

More details

BCS theory starts from the assumption that there is some attraction between electrons, which can overcome the Coulomb repulsion. In most materials (in low temperature superconductors), this attraction is brought about indirectly by the coupling of electrons to the crystal lattice (as explained above). However, the results of BCS theory do "not" depend on the origin of the attractive interaction. The original results of BCS (discussed below) described an "s-wave" superconducting state, which is the rule among low-temperature superconductors but is not realized in many "unconventional superconductors", such as the "d-wave" high-temperature superconductors.Extensions of BCS theory exist to describe these other cases, although they are insufficient to completely describe the observed features of high-temperature superconductivity.

BCS is able to give an approximation for the quantum-mechanical state of thesystem of (attractively interacting) electrons inside the metal. This state isnow known as the "BCS state". In the normal state of a metal, electrons move independently, whereas in the BCS state, they are bound into "Cooper pairs" by the attractive interaction.

BCS derived several important theoretical predictions that are independent of the details of the interaction, since the quantitative predictions mentioned below hold for any sufficiently weak attraction between the electrons and this last condition is fulfilled for many low temperature superconductors - the so-called "weak-coupling case". These have been confirmed in numerous experiments:

* Since the electrons are bound into Cooper pairs, a finite amount of energy is needed to break these apart into two independent electrons. This means there is an "energy gap" for "single-particle excitation", unlike in the normal metal (where the state of an electron can be changed by adding an arbitrarily small amount of energy). This energy gap is highest at low temperatures but vanishes at the transition temperature when superconductivity ceases to exist. BCS theory correctly predicts the variation of this gap with temperature. It also gives an expression that shows how the gap grows with the strength of the attractive interaction and the (normal phase) single particle density of states at the Fermi energy. Furthermore, it describes how the density of states is changed on entering the superconducting state, where there are no electronic states any more at the Fermi energy. The energy gap is most directly observed in tunneling experiments and in reflection of microwaves from the superconductor.

* The ratio between the value of the energy gap at zero temperature and the value of the superconducting transition temperature (expressed in energy units) takes the universal value of 3.5, independent of material.

* Due to the energy gap, the specific heat of the superconductor is suppressed strongly (exponentially) at low temperatures, there being no thermal excitations left. However, before reaching the transition temperature, the specific heat of the superconductor becomes even higher than that of the normal conductor (measured immediately above the transition) and the ratio of these two values is found to be universally given by 2.5.

* BCS theory correctly predicts the Meissner effect, i.e. the expulsion of a magnetic field from the superconductor and the variation of the penetration depth (the extent of the screening currents flowing below the metal's surface) with temperature.

* It also describes the variation of the critical magnetic field (above which the superconductor can no longer expel the field but becomes normal conducting) with temperature. BCS theory relates the value of the critical field at zero temperature to the value of the transition temperature and the density of states at the Fermi energy.

* In its simplest form, BCS gives the superconducting transition temperature in terms of the electron-phonon coupling potential and the Debye cutoff energy::k_B,T_c = 1.14E_D,{e^{-1/N(0),V.,

ee also

*Superconductivity

References

The BCS Papers:

*L. N. Cooper, "Bound Electron Pairs in a Degenerate Fermi Gas", [http://prola.aps.org/abstract/PR/v104/i4/p1189_1 "Phys. Rev" 104, 1189 - 1190 (1956)] .

*J. Bardeen, L. N. Cooper, and J. R. Schrieffer, "Microscopic Theory of Superconductivity", [http://prola.aps.org/abstract/PR/v106/i1/p162_1 "Phys. Rev." 106, 162 - 164 (1957)] .

*J. Bardeen, L. N. Cooper, and J. R. Schrieffer, "Theory of Superconductivity", [http://link.aps.org/abstract/PR/v108/p1175 "Phys. Rev." 108, 1175 (1957)] .

External links

* ScienceDaily: [http://www.sciencedaily.com/releases/2006/08/060817101658.htm Physicist Discovers Exotic Superconductivity] (University of Arizona) August 17, 2006
* [http://hyperphysics.phy-astr.gsu.edu/hbase/solids/bcs.html Hyperphysics page on BCS ]
* [http://ffden-2.phys.uaf.edu/212_fall2003.web.dir/T.J_Barry/bcstheory.html BCS History ]

Further reading

*John Robert Schrieffer, "Theory of Superconductivity", (1964), ISBN 0-7382-0120-0
*Michael Tinkham, "Introduction to Superconductivity", ISBN 0-4864-3503-2
*Pierre-Gilles de Gennes, "Superconductivity of Metals and Alloys", ISBN 0-7382-0101-4.


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • BCS theory — Physics. a general quantum theory of superconductivity that describes many properties of superconducting materials. Also called Bardeen Cooper Schrieffer theory. [after U.S. physicists J. BARDEEN, Leon N. Cooper (born 1930), and John R.… …   Universalium

  • BCS theory — Physics. a general quantum theory of superconductivity that describes many properties of superconducting materials. Also called Bardeen Cooper Schrieffer theory. [after U.S. physicists J. BARDEEN, Leon N. Cooper (born 1930), and John R.… …   Useful english dictionary

  • BCS — may refer to:American football* Bowl Championship Series, a system that selects matchups for college football bowl games * BCS National Championship Game, the final bowl game of the annual Bowl Championship Series * BCS conference, the six major… …   Wikipedia

  • theory — /thee euh ree, thear ee/, n., pl. theories. 1. a coherent group of general propositions used as principles of explanation for a class of phenomena: Einstein s theory of relativity. 2. a proposed explanation whose status is still conjectural, in… …   Universalium

  • BCS-Theorie — Die BCS Theorie ist eine Vielteilchentheorie zur Erklärung der Supraleitung in Metallen. Die BCS Theorie wurde 1957 von John Bardeen, Leon N. Cooper und John R. Schrieffer entwickelt. Der Name leitet sich aus den Anfangsbuchstaben der Nachnamen… …   Deutsch Wikipedia

  • Effective field theory — In physics, an effective field theory is an approximate theory (usually a quantum field theory) that includes appropriate degrees of freedom to describe physical phenomena occurring at a chosen length scale, while ignoring substructure and… …   Wikipedia

  • Quantum field theory — In quantum field theory (QFT) the forces between particles are mediated by other particles. For instance, the electromagnetic force between two electrons is caused by an exchange of photons. But quantum field theory applies to all fundamental… …   Wikipedia

  • Mattis–Bardeen theory — The Mattis–Bardeen theory is a possible explanation of a phenomenon observed in superconductors. Contents 1 Introduction 2 The response to the electromagnetic wave 3 Use in Optical Study 4 Referen …   Wikipedia

  • Microscopic theory — A microscopic theory is one that contains an explanation at the atomic or subatomic level in contrast to a higher level or classical macroscopic or phenomenological theory. eg in superconductivity BCS theory is a microscopic theory. References… …   Wikipedia

  • Werthamer–Helfand–Hohenberg theory — This theory was proposed in 1966 [ N. R. Werthamer, E. Helfand, P. C. Hohenberg: Phys. Rev. 147 (1966) 295 ] to go beyond BCS theory of superconductivity and it provides predictions of upper critical field (Hc2) in type II superconductors… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”