Waring's problem

Waring's problem

In number theory, Waring's problem, proposed in 1770 by Edward Waring, asks whether for every natural number "k" there exists an associated positive integer "s" such that every natural number is the sum of at most "s" "k"th powers of natural numbers (for example, every number is the sum of at most 4 squares, or 9 cubes, or 19 fourth powers, etc.). The affirmative answer, known as the Hilbert–Waring theorem, was provided by Hilbert in 1909. [D. Hilbert, "Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem)", Mathematische Annalen, 67, pages 281-300 (1909)] Waring's problem has its own Mathematics Subject Classification, 11P05, "Waring's problem and variants."

The number "g"("k")

For every "k", we denote by "g"("k") the minimum number "s" of "k"th powers needed to represent all integers. Note we have "g"(1) = 1. Some simple computations show that 7 requires 4 squares, 23 requires 9 cubes, and 79 requires 19 fourth-powers; these examples show that "g"(2) ≥ 4, "g"(3) ≥ 9, and "g"(4) ≥ 19. Waring conjectured that these values were in fact the best possible.

Lagrange's four-square theorem of 1770 states that every natural number is the sum of at most four squares; since three squares are not enough, this theorem establishes "g"(2) = 4. Lagrange's four-square theorem was conjectured in Bachet's 1621 edition of Diophantus; Fermat claimed to have a proof, but did not publish it. [cite book | last = Dickson | first = Leonard Eugene | authorlink = Leonard Eugene Dickson | title = History of the Theory of Numbers, Volume II: Diophantine Analysis | publisher = Carnegie Institute of Washington | date = 1920 | chapter = Chapter VIII]

Over the years various bounds were established, using increasingly sophisticated and complex proof techniques. For example, Liouville showed that "g"(4) is at most 53. Hardy and Littlewood showed that all sufficiently large numbers are the sum of at most 19 fourth powers.

That "g"(3) = 9 was established from 1909 to 1912 by Wieferich [cite journal | last = Wieferich | first = Arthur | authorlink = Arthur Wieferich | title = Beweis des Satzes, daß sich eine jede ganze Zahl als Summe von höchstens neun positiven Kuben darstellen läßt | journal = Mathematische Annalen | volume = 66 | pages = 95–101 | date = 1909 | url = http://dz-srv1.sub.uni-goettingen.de/sub/digbib/loader?did=D38240 | doi = 10.1007/BF01450913] and A. J. Kempner [cite journal | last = Kempner | first = Aubrey | title = Bemerkungen zum Waringschen Problem | journal = Mathematische Annalen | volume = 72 | pages = 387–399 | date=1912 | url = http://dz-srv1.sub.uni-goettingen.de/sub/digbib/loader?did=D28751 | doi = 10.1007/BF01456723] , "g"(4) = 19 in 1986 by R. Balasubramanian, F. Dress, and J.-M. Deshouillers [Balasubramanian, Ramachandran; Deshouillers, Jean-Marc; Dress, François, "Problème de Waring pour les bicarrés. I. Schéma de la solution." (French. English summary) [Waring's problem for biquadrates. I. Sketch of the solution] C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 4, pp. 85-88] [Balasubramanian, Ramachandran; Deshouillers, Jean-Marc; Dress, François, "Problème de Waring pour les bicarrés. II. Résultats auxiliaires pour le théorème asymptotique." (French. English summary) [Waring's problem for biquadrates. II. Auxiliary results for the asymptotic theorem] C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 5, pp. 161-163] , "g"(5) = 37 in 1964 by Chen Jingrun, and "g"(6) = 73 in 1940 by Pillai [Pillai, S. S. "On Waring's problem g(6)=73", Proc. Indian Acad. Sci. 12A, pp. 30-40] .

Euler conjectured that, with ["x"] and {"x"} denoting the integral and fractional part of "x" respectively, g(k)=2"k"+ [(3/2)"k"] -2. [ [http://mathworld.wolfram.com/EulersConjecture.html Euler's Conjecture - from Wolfram MathWorld ] ] Later work by Dickson, Pillai, Rubugunday and Niven [cite journal|author = Niven, Ivan M.|authorlink = Ivan M. Niven|title = An unsolved case of the Waring problem|journal = American Journal of Mathematics|volume = 66|pages = 137–143|year = 1944|url = http://links.jstor.org/sici?sici=0002-9327%28194401%2966%3A1%3C137%3AAUCOTW%3E2.0.CO%3B2-Q|issue = 1|doi = 10.2307/2371901] expanded on this idea, and now, apart from a certain ambiguity, all the other values of "g" are also known:

:g(k)=2"k"+ [(3/2)"k"] -2 if 2"k"{(3/2)"k"}+ [(3/2)"k"] ≤ 2"k"

:g(k)=2"k"+ [(3/2)"k"] + [(4/3)"k"] -2 if 2"k"{(3/2)"k"}+ [(3/2)"k"] >2"k" and [(4/3)"k"] [(3/2)"k"] + [(4/3)"k"] + [(3/2)"k"] =2"k"

:g(k)=2"k"+ [(3/2)"k"] + [(4/3)"k"] -3 if 2"k"{(3/2)"k"}+ [(3/2)"k"] >2"k" and [(4/3)"k"] [(3/2)"k"] + [(4/3)"k"] + [(3/2)"k"] >2"k".

(Here [(3/2)"k"] is the usual shorthand for "the integer part of (3/2)"k"", and {(3/2)"k"} = (3/2)"k" - [(3/2)"k"] .)

It is conjectured that 2"k"{(3/2)"k"}+ [(3/2)"k"] >2"k", which has been shown to happen for at most finitely many "k" by Mahler [Mahler, K. "On the fractional parts of the powers of a rational number II", 1957, Mathematika, 4, pages 122-124] , in fact never occurs. If the conjecture holds, then indeed g(k)=2"k"+ [(3/2)"k"] -2 for each positive integer "k". The conjecture indeed is verified for all reasonably small "k". The first proven or conjectured values 1, 4, 9, 19, 37, 73, 143, 279, 548, 1079, 2132, 4223, 8384, 16673, 33203, 66190, 132055 ... are listed in Sloane's [http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A002804 A002804] .

The number "G"("k")

From the work of Hardy and Littlewood, more fundamental than "g"("k") turned out to be "G"("k"), which is defined to be the least positive integer "s" such that every sufficiently large integer (i.e. every integer greater than some constant) can be represented as a sum of at most "s" "k"th powers of positive integers. It is easy to see that "G"(2)≥ 4 since every integer congruent to 7 modulo 8 cannot be represented as a sum of three squares. Since "G"("k") ≤ "g"("k") for all "k", this shows that "G"(2) = 4. Davenport showed that "G"(4) = 16 in 1939, by demonstrating that any sufficiently large number congruent to 1 through 14 mod 16 could be written as a sum of 14 fourth powers (Vaughan in 1985 reduced this from 14 to 13). The exact value of "G"("k") is unknown for any other "k", but there exist bounds.

Lower bounds for "G"("k")

The number "G"("k") is greater than or equal to:2"r"+2 if k=2"r" with "r" ≥ 2, or "k"=3·2"r";:p"r"+1 if "p" is a prime greater than 2 and "k"="p""r"(p-1);:(p"r"+1-1)/2 if "p" is a prime greater than 2 and "k"=p"r"(p-1)/2;:"k" + 1 for all integers "k" greater than 1.

In the absence of congruence restrictions, a density argument suggests that G(k) should equal k+1.

Upper bounds for "G"("k")

The following upper bounds for "G"("k") are known:

"k" 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 "G"("k") ≤ 7 17 21 33 42 50 59 67 76 84 92 100 109 117 125 134 142

G(3) is at least four (since cubes are congruent to 0, 1 or -1 mod 9); 1290740 is the last number less than 1.3×109 to require six cubes, and the number of numbers between N and 2N requiring five cubes drops off with increasing N at sufficient speed to have people believe G(3)=4; the largest number now known not to be a sum of four cubes is 7373170279850 Jean-Marc Deshouillers, François Hennecart, Bernard Landreau, 7373170279850, Mathematics of Computation 69 (2000) 421--439, available at http://www.ams.org/mcom/2000-69-229/S0025-5718-99-01116-3/S0025-5718-99-01116-3.pdf] , and the authors give reasonable arguments there that this may be the largest possible.

13792 is the largest number to require seventeen fourth powers (Deshouillers, Hennecart and Landreau showed in 2000 Deshouillers, Hennecart, Landreau, Waring's Problem for sixteen biquadrates - numerical results, Journal de Théorie des Nombers de Bordeaux 12 (2000), 411-422; http://www.math.ethz.ch/EMIS/journals/JTNB/2000-2/Dhl.ps] that every number between 13793 and 10245 required at most sixteen, and Kawada, Wooley and Deshouillers extended Davenport's 1939 result to show that every number above 10220 required no more than sixteen). Sixteen fourth powers are always needed to write a number of the form 31·16n.

617597724 is the last number less than 1.3×109 which requires ten fifth powers, and 51033617 the last number less than 1.3×109 which requires eleven.

Using his improved Hardy-Littlewood method, I. M. Vinogradov has shown that:G(k)le k(3log k +11).
T. D. Wooley has established the bound, in big O notation,:G(k)le klog k+kloglog k+O(k). (See "The Hardy-Littlewood method", R. C. Vaughan, 2nd ed., Cambridge Tracts in Mathematics, CUP, 1997] for a proof.)

Further reading

* W. J. Ellison: "Waring's problem". American Mathematical Monthly, volume 78 (1971), pp. 10-36. Survey, contains the precise formula for "g"("k"), a simplified version of Hilbert's proof and a wealth of references.
* Hans Rademacher and Otto Toeplitz, "The Enjoyment of Mathematics" (1933) (ISBN 0-691-02351-4). Has a proof of the Lagrange theorem, accessible to high school students.

Notes

References

*Yu. V. Linnik, "An elementary solution of the problem of Waring by Schnirelman's method". "Mat. Sb., N. Ser." 12 (54), 225–230 (1943)


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Waring'sches Problem — Das Waringsche Problem ist eine Problemstellung der Zahlentheorie. In seinem Werk Meditationes algebraicae (1770) stellte Edward Waring eine Vermutung auf, die den Vier Quadrate Satz verallgemeinerte. Der Vier Quadrate Satz besagt, dass jede… …   Deutsch Wikipedia

  • Waring — Several people have had the name Waring: *Antonio J. Waring, Jr. *Derek Waring, British actor. *Edward Waring, British mathematician. See Waring s Problem. *Eddie Waring, British sports commentator. *Elijah Waring, (c. 1788 – 29 March 1857),… …   Wikipedia

  • Waring, Edward — ▪ English mathematician born 1734, Old Heath, near Shrewsbury, Shropshire, England died August 15, 1798, Pontesbury, Shropshire       English mathematician whose primary research interests were in algebra and number theory.       Waring attended… …   Universalium

  • Waring-Problem —   [ weərɪȖ ], eine von dem englischen Mathematiker Edward Waring (* 1734, ✝ 1798) 1770 als Vermutung formulierte Aussage der additiven Zahlentheorie, nach der jede natürliche Zahl die Summe von höchstens neun dritten Potenzen natürlicher Zahlen… …   Universal-Lexikon

  • Waring — ist der Name folgender Personen: Edward Waring (1736–1798), englischer Mathematiker Fred Waring (1900–1984), US amerikanischer Musiker und Bandleader Marilyn Waring (* 1952), neuseeländische Feministin Orte: Waring (Texas), Vereinigte Staaten… …   Deutsch Wikipedia

  • Waringsches Problem — Das Waringsche Problem ist eine Problemstellung der Zahlentheorie. Es verallgemeinert den Vier Quadrate Satz, der besagt, dass jede natürliche Zahl als Summe von höchstens vier Quadratzahlen dargestellt werden kann. In seinem Werk Meditationes… …   Deutsch Wikipedia

  • Problema de Waring — Saltar a navegación, búsqueda En teoría de números el Problema de Waring, propuesto en 1770 por Edward Waring, hablaba acerca de que para cualquier número natural k existe un entero positivo asociado s tal que todo número natural es la suma de al …   Wikipedia Español

  • Edward Waring — Infobox Scientist name = Edward Waring box width = 300px birth date = 1736 birth place = Old Heath, Shropshire, England death date = death date and age|1798|08|15|1736|01|01 death place = Pontesbury, Shropshire, England nationality = United… …   Wikipedia

  • Problème de Waring — En théorie des nombres, le problème de Waring, proposé en 1770 par Edward Waring consiste à déterminer si, pour tout entier naturel k , il existe un entier naturel s tel que tout entier soit la somme d au plus s puissances k ièmes d entiers. La… …   Wikipédia en Français

  • Probleme de Waring — Problème de Waring En théorie des nombres, le problème de Waring, proposé en 1770 par Edward Waring, demande si, pour tout entier naturel k, il existe un entier naturel s tel que tout entier soit la somme d au plus s puissances kième d entiers.… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”