Atomic weight

Atomic weight (symbol: "A"sub|r) is a dimensionless physical quantity, the ratio of the average mass of atoms of an element (from a given source) to 1/12 of the mass of an atom of carbon-12.cite journal | author = International Union of Pure and Applied Chemistry | title = Atomic Weights of the Elements 1979 | url = http://www.iupac.org/publications/pac/1980/pdf/5210x2349.pdf | doi = 0033-4545/80/1001-2349$02.00/0 | journal = Pure Appl. Chem. | year = 1980 | volume = 52 | pages = 2349–84] GreenBookRef|page=41] The term is usually used, without further qualification, to refer to the standard atomic weights published at regular intervals by the International Union of Pure and Applied Chemistry (IUPAC) [The latest edition is cite journal | author = International Union of Pure and Applied Chemistry | url = http://www.iupac.org/publications/pac/2006/pdf/7811x2051.pdf | title = Atomic Weights of the Elements 2005 | journal = Pure Appl. Chem. | volume = 78 | issue = 11 | pages = 2051–66 | doi = 10.1351/pac200678112051 | year = 2006] [The updated list of standard atomic weights is expected to be formally published in late 2008. The IUPAC Commission on Isotopic Abundances and Atomic Weights [http://www.iupac.org/objID/Note/nt50112469625981329917907 announced] in August 2007 that the standard atomic weights of the following elements would be revised (new figures quoted here): lutetium 174.9668(1); molybdenum 95.96(2); nickel 58.6934(4); ytterbium 173.054(5); zinc 65.38(2). The recommended value for the isotope amount ratio of sup|40Ar/sup|36Ar (which could be useful as a control measurement in argon–argon dating) was also changed from 296.03(53) to 298.56(31).] and which are intended to be applicable to normal laboratory materials. These standard atomic weights are reprinted in a wide variety of textbooks, commercial catalogues, wallcharts etc, and in the table below. The term "relative atomic mass" may also used to describe this physical quantity, and indeed the continued use of the term "atomic weight" has attracted considerable controversy since at least the 1960scite journal | first = P. | last = de Bièvre | coauthors = Peiser, H.S. | year = 1992 | title = 'Atomic Weight'—The Name, Its History, Definition, and Units | url = http://www.iupac.org/publications/pac/1992/pdf/6410x1535.pdf | journal = Pure Appl. Chem. | volume = 64 | issue = 10 | pages = 1535–43] (see below).

Atomic weights, unlike atomic masses (the masses of individual atoms), are not physical constants and vary from sample to sample. Nevertheless, they are sufficiently constant in "normal" samples to be of fundamental importance in chemistry.

Definition

The IUPAC definition of atomic weight is:

An atomic weight (relative atomic mass) of an element from a specified source is the ratio of the average mass per atom of the element to 1/12 of the mass of an atom of sup|12C.

The definition deliberately specifies ""An" atomic weight…", as an element will have different atomic weights depending on the source. For example, boron from Turkey has a lower atomic weight than boron from California, because of its different isotopic composition. [Greenwood&Earnshaw1st|pages=pp. 21, 160] cite journal | author = International Union of Pure and Applied Chemistry | title = Atomic Weights of the Elements: Review 2000 | url = http://www.iupac.org/publications/pac/2003/pdf/7506x0683.pdf | journal = Pure Appl. Chem. | volume = 75 | issue = 6 | pages = 683–800 | year = 2003] Nevertheless, given the cost and difficulty of isotope analysis, it is usual to use the tabulated values of standard atomic weights which are ubiquitous in chemical laboratories.

Naming controversy

The use of the name "atomic weight" has attracted a great deal of controversy among scientists. Objectors to the name usually prefer the term relative atomic mass, or just atomic mass. The basic objection is that atomic weight is not a weight, that is the force exerted on an object in a gravitational field, measured in units of force such as the newton.

In reply, supporters of the term "atomic weight" point out (among other arguments) that
*the name has been in continuous use for the same quantity since it was first conceptualized in 1808; [cite book | first = John | last = Dalton | authorlink = John Dalton | title = A New System of Chemical Philosophy | url = http://www.archive.org/details/newsystemofchemi01daltuoft | location = Manchester | date = 1808]
*for most of that time, atomic weights really were measured by weighing (that is by gravimetric analysis) and that the name of a physical quantity shouldn't change simply because the method of its determination has changed;
*the term "relative atomic mass" should be reserved for the mass of a specific nuclide (or isotope), while "atomic weight" be used for the weighted mean of the relative atomic mass over all the atoms in the sample;
*it is not uncommon to have misleading names of physical quantities which are retained for historical reasons, such as
**electromotive force, which is not a force
**resolving power, which is not a power
**molar concentration, which is not a molar quantity (a quantity expressed per unit amount of substance)It could be added that atomic weight is often not truly "atomic" either, as it doesn't correspond to the property of any individual atom. The same argument could be made against "relative atomic mass" used in this sense.

Determination of atomic weight

Modern atomic weights are calculated from measured values of relative atomic mass (for each nuclide) and isotopic composition. Highly accurate relative atomic masses are avalableNational Institute of Standards and Technology. [http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=&ascii=html&isotype=some Atomic Weights and Isotopic Compositions for All Elements] .] cite journal | title = The AME2003 atomic mass evaluation (I). Evaluation of input data, adjustment procedures | doi = doi:10.1016/j.nuclphysa.2003.11.002 | first = A.H. | last = Wapstra | coauthors = Audi, G.;Thibault, C. | journal = Nucl. Phys. A | volume = 729 | pages = 129–336 | year = 2003 cite journal | first = A.H. | last = Wapstra | coauthors = Audi, G.;Thibault, C. | journal = Nucl. Phys. A | volume = 729 | pages = 337–676 | year = 2003 | doi = doi:10.1016/j.nuclphysa.2003.11.003 | title = The AME2003 atomic mass evaluation (II). Tables, graphs, and references [http://www.nndc.bnl.gov/masses/ Data tables] .] for virtually all non-radioactive nuclides, but isotopic compositions are both harder to measure to high precision and more subject to variation between samples.cite journal | author = International Union of Pure and Applied Chemistry | title = Isotopic Composition of the Elements 1997 | journal = Pure Appl. Chem. | url = http://media.iupac.org/publications/pac/1998/pdf/7001x0217.pdf | volume = 70 | issue = 1 | pages = 217–35 | doi = doi:10.1351/pac199870010217 | year = 1998] cite journal | author = International Union of Pure and Applied Chemistry | volume = 74 | issue = 10 | pages = 1987–2017 | year = 2002 | url = http://www.iupac.org/publications/pac/2002/pdf/7410x1987.pdf | title = Isotopic Abundance Variations Of Selected Elements | journal = Pure Appl. Chem.] For this reason, the atomic weights of the twenty-two mononuclidic elements are known to especially high accuracy – an uncertainty of only one part in 38 million in the case of fluorine, a precision which is greater than the current best value for the Avogadro constant (one part in 20 million).

The calculation is exemplified for silicon, whose atomic weight is especially important in metrology. Silicon exists in nature as a mixture of three isotopes: sup|28Si, sup|29Si and sup|30Si. The relative atomic masses of these nuclides are known to a precision of one part in 14 billion for sup|28Si and about one part billion for the others. However the range of natural abundance for the isotopes is such that the standard abundance can only be given to about ±0.001% (see table).The calculation is:"A"sub|r(Si) = (27.97693 × 0.922297) + (28.97649 × 0.046832) + (29.97377 × 0.030872) = 28.0854The estimation of the uncertainty is complicated, especially as the sample distribution is not necessarily symmetrical: the IUPAC standard atomic weights are quoted with estimated symmetrical uncertainties,cite journal | last = Holden | first = Norman E. | url = http://www.iupac.org/publications/ci/2004/2601/1_holden.html | journal = Chemistry International | year = 2004 | issue = 1 | title = Atomic Weights and the International Committee—A Historical Review | volume = 26 | pages = 4–7] and the value for silicon is 28.0855(3). The relative standard uncertainty in this value is 1e|–5 or 10 ppm.

tandard atomic weights (to four figures)

References

*cite journal | author = International Union of Pure and Applied Chemistry | url = http://www.iupac.org/publications/pac/1984/pdf/5606x0695.pdf | doi = 0033-4545/84 $3.00+0.00 | volume = 56 | issue = 6 | year = 1984 | pages = 695–768 | title = Element by Element Review of Their Atomic Weights | journal = Pure Appl. Chem.

External links

* [http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=&ascii=html&isotype=some NIST relative atomic masses of all isotopes and the standard atomic weights of the elements]
* [http://www.iupac.org/publications/ci/2004/2601/1_holden.html Atomic Weights and the International Committee — A Historical Review]
* [http://www.chem.qmul.ac.uk/iupac/AtWt/index.html Atomic Weights of the Elements 2007] – semi-official compilation in advance of the formal publication of the report


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Atomic weight — Weight Weight, n. [OE. weght, wight, AS. gewiht; akin to D. gewigt, G. gewicht, Icel. v[ae]tt, Sw. vigt, Dan. v[ae]gt. See {Weigh}, v. t.] [1913 Webster] 1. The quality of being heavy; that property of bodies by which they tend toward the center… …   The Collaborative International Dictionary of English

  • Atomic weight — Atomic A*tom ic, Atomical A*tom ic*al, a. [Cf. F. atomique.] 1. Of or pertaining to atoms. [1913 Webster] 2. Extremely minute; tiny. [1913 Webster] {Atomic bomb}, see {atom bomb} in the vocabulary. {Atomic philosophy}, or {Doctrine of atoms}, a… …   The Collaborative International Dictionary of English

  • atomic weight — n. Chem. the weight of one atom of an element expressed in atomic mass units: it is the average weight of all the isotopes of the element …   English World dictionary

  • atomic weight — n the mass of one atom of an element specif the average mass of an atom of an element as it occurs in nature that is expressed in atomic mass units see ELEMENT (table) * * * the sum of the masses of the constituents of an atom, either that of a… …   Medical dictionary

  • atomic weight — Chem. the average weight of an atom of an element, formerly based on the weight of one hydrogen atom taken as a unit or on 1/16 the weight of an oxygen atom, but after 1961 based on 1/12 the weight of the carbon 12 atom. Abbr.: at. wt. [1820 30]… …   Universalium

  • atomic weight — noun (chemistry) the mass of an atom of a chemical element expressed in atomic mass units • Syn: ↑atomic mass, ↑relative atomic mass • Topics: ↑chemistry, ↑chemical science • Hypernyms: ↑ …   Useful english dictionary

  • atomic weight — noun a) Former term for the more specific relative atomic mass. The equivalent weight of an element or compound is that weight equivalent in reactive power to one atomic weight of hydrogen. b) A term used to represent the mean relative atomic… …   Wiktionary

  • atomic weight — UK / US noun [countable/uncountable] Word forms atomic weight : singular atomic weight plural atomic weights chemistry relative atomic mass …   English dictionary

  • atomic weight — santykinė atominė masė statusas T sritis Standartizacija ir metrologija apibrėžtis Cheminio elemento vidutinės masės ir nuklido ¹²C atomo masės 1/12 dalies dalmuo. atitikmenys: angl. atomic mass; atomic weight; relative atomic mass vok. Atommasse …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • atomic weight — santykinė atominė masė statusas T sritis Standartizacija ir metrologija apibrėžtis Vidutinės elemento atomų masės ir 1/12 nuklido ¹²C atomo masės dalmuo. atitikmenys: angl. atomic mass; atomic weight; relative atomic mass vok. Atommasse, f;… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”