Inductive dimension

Inductive dimension

In the mathematical field of topology, the inductive dimension of a topological space X is either of two values, the small inductive dimension ind(X) or the large inductive dimension Ind(X). These are based on the observation that, in n-dimensional Euclidean space Rn, (n − 1)-dimensional spheres (that is, the boundaries of n-dimensional balls) have dimension n − 1. Therefore it should be possible to define the dimension of a space inductively in terms of the dimensions of the boundaries of suitable open sets.

The small and large inductive dimensions are two of the three most usual ways of capturing the notion of "dimension" for a topological space, in a way that depends only on the topology (and not, say, on the properties of a metric space). The other is the Lebesgue covering dimension. The term "topological dimension" is ordinarily understood to refer to Lebesgue covering dimension. For "sufficiently nice" spaces, the three measures of dimension are equal.

Contents

Formal definition

We want the dimension of a point to be 0, and a point has empty boundary, so we start with

\operatorname{ind}(\varnothing)=\operatorname{Ind}(\varnothing)=-1

Then inductively, ind(X) is the smallest n such that, for every x \isin X and every open set U containing x, there is an open V containing x, where the closure of V is a subset of U, such that the boundary of V has small inductive dimension less than or equal to n − 1. (In the case above, where X is Euclidean n-dimensional space, V will be chosen to be an n-dimensional ball centered at x.)

For the large inductive dimension, we restrict the choice of V still further; Ind(X) is the smallest n such that, for every closed subset F of every open subset U of X, there is an open V in between (that is, F is a subset of V and the closure of V is a subset of U), such that the boundary of V has large inductive dimension less than or equal to n − 1.

Relationship between dimensions

Let \operatorname{dim} be the Lebesgue covering dimension. For any topological space X, we have

\operatorname{dim} X = 0 if and only if \operatorname{Ind} X = 0.

Urysohn's theorem states that when X is a normal space with a countable base, then

\operatorname{dim} X = \operatorname{Ind} X = \operatorname{ind} X.

Such spaces are exactly the separable and metrizable X (see Urysohn's metrization theorem).

The Nöbeling-Pontryagin theorem then states that such spaces with finite dimension are characterised up to homeomorphism as the subspaces of the Euclidean spaces, with their usual topology. The Menger-Nöbeling theorem (1932) states that if X is compact metric separable and of dimension n, then it embeds as a subspace of Euclidean space of dimension 2n + 1. (Georg Nöbeling was a student of Karl Menger. He introduced Nöbeling space, the subspace of R2n + 1 consisting of points with at least n + 1 co-ordinates being irrational numbers, which has universal properties for embedding spaces of dimension n.)

Assuming only X metrizable we have (Miroslav Katětov)

ind X ≤ Ind X = dim X;

or assuming X compact and Hausdorff (P. S. Aleksandrov)

dim X ≤ ind X ≤ Ind X.

Either inequality here may be strict; an example of Vladimir V. Filippov shows that the two inductive dimensions may differ.

A separable metric space X satisfies the inequality \mathop{Ind}X\le n if and only if for every closed sub-space A of the space X and each continuous mapping f:A\to S^n there exists a continuous extension \bar f:X\to S^n.

References

Further reading

  • Crilly, Tony, 2005, "Paul Urysohn and Karl Menger: papers on dimension theory" in Grattan-Guinness, I., ed., Landmark Writings in Western Mathematics. Elsevier: 844-55.
  • R. Engelking, Theory of Dimensions. Finite and Infinite, Heldermann Verlag (1995), ISBN 3-88538-010-2.
  • V. V. Fedorchuk, The Fundamentals of Dimension Theory, appearing in Encyclopaedia of Mathematical Sciences, Volume 17, General Topology I, (1993) A. V. Arkhangel'skii and L. S. Pontryagin (Eds.), Springer-Verlag, Berlin ISBN 3-540-18178-4.
  • V. V. Filippov, On the inductive dimension of the product of bicompacta, Soviet. Math. Dokl., 13 (1972), N° 1, 250-254.
  • A. R. Pears, Dimension theory of general spaces, Cambridge University Press (1975).

Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Dimension — 0d redirects here. For 0D, see 0d (disambiguation). For other uses, see Dimension (disambiguation). From left to right, the square, the cube, and the tesseract. The square is bounded by 1 dimensional lines, the cube by 2 dimensional areas, and… …   Wikipedia

  • Dimension (disambiguation) — A dimension is a spatial characteristic of an object; that is, length, width, or height. Dimension may also be: Contents 1 Science: 2 Mathematics: 3 Media: 4 Other …   Wikipedia

  • Dimension theory — This article is about dimension theory in topology. For dimension theory in commutative algebra, see dimension theory (algebra). In mathematics, dimension theory is a branch of general topology dealing with dimensional invariants of topological… …   Wikipedia

  • Hausdorff dimension — In mathematics, the Hausdorff dimension (also known as the Hausdorff–Besicovitch dimension) is an extended non negative real number associated to any metric space. The Hausdoff dimension generalizes the notion of the dimension of a real vector… …   Wikipedia

  • Lebesgue covering dimension — or topological dimension is one of several inequivalent notions of assigning a topological invariant dimension to a given topological space. Contents 1 Definition 2 Examples 3 Properties 4 …   Wikipedia

  • Limite inductive — Sommaire 1 Avant propos 2 Ensemble ordonné filtrant 3 Système inductif 4 Propriété universelle de la limite inductive …   Wikipédia en Français

  • Inférence inductive — Induction (logique) Pour les articles homonymes, voir Induction. À la différence de la déduction qui impose des propositions de départ non supposées vraies, l induction se propose de chercher des lois générales à partir de l observation de faits… …   Wikipédia en Français

  • Recherche inductive — Induction (logique) Pour les articles homonymes, voir Induction. À la différence de la déduction qui impose des propositions de départ non supposées vraies, l induction se propose de chercher des lois générales à partir de l observation de faits… …   Wikipédia en Français

  • List of mathematics articles (I) — NOTOC Ia IA automorphism ICER Icosagon Icosahedral 120 cell Icosahedral prism Icosahedral symmetry Icosahedron Icosian Calculus Icosian game Icosidodecadodecahedron Icosidodecahedron Icositetrachoric honeycomb Icositruncated dodecadodecahedron… …   Wikipedia

  • Space (mathematics) — This article is about mathematical structures called spaces. For space as a geometric concept, see Euclidean space. For all other uses, see space (disambiguation). A hierarchy of mathematical spaces: The inner product induces a norm. The norm… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”