Tensile strength

Tensile strength sigma_{UTS}, or S_U is the stress at which a material breaks or permanently deforms. Tensile strength is an intensive property and, consequently, does not depend on the size of the test specimen. However, it is dependent on the preparation of the specimen and the temperature of the test environment and material.

Tensile strength, along with elastic modulus and corrosion resistance, is an important parameter of engineering materials that are used in structures and mechanical devices. It is specified for materials such as alloys, composite materials, ceramics, plastics and wood.

Explanation

There are three definitions of tensile strength:;Yield strength: The stress at which material strain changes from elastic deformation to plastic deformation, causing it to deform permanently.;Ultimate strength: The maximum stress a material can withstand when subjected to tension, compression or shearing. It is the maximum stress on the stress-strain curve.;Breaking strength: The stress coordinate on the stress-strain curve at the point of rupture.

Concept

The various definitions of tensile strength are shown in the following stress-strain graph for low-carbon steel:

[

1. Ultimate Strength
2. Yield Strength
3. Tensile strength
4. Strain hardening region
5. Necking region.]

Metals including steel have a linear stress-strain relationship up to the yield point, as shown in the figure. In some steels the stress falls after the yield point. This is due to the interaction of carbon atoms and dislocations in the stressed steel. Cold worked and alloy steels do not show this effect. For most metals yield point is not sharply defined. Below the yield strength all deformation is recoverable, and the material will return to its initial shape when the load is removed. For stresses above the yield point the deformation is not recoverable, and the material will not return to its initial shape. This unrecoverable deformation is known as plastic deformation. For many applications plastic deformation is unacceptable, and the yield strength is used as the design limitation.

After the yield point, steel and many other ductile metals will undergo a period of strain hardening, in which the stress increases again with increasing strain up to the "ultimate strength". If the material is unloaded at this point, the stress-strain curve will be parallel to that portion of the curve between the origin and the yield point. If it is re-loaded it will follow the unloading curve up again to the ultimate strength, which has become the new yield strength.

After a metal has been loaded to its yield strength it begins to "neck" as the cross-sectional area of the specimen decreases due to plastic flow. When necking becomes substantial, it may cause a reversal of the engineering stress-strain curve, where decreasing stress correlates to increasing strain because of geometric effects. This is because the engineering stress and engineering strain are calculated assuming the original cross-sectional area before necking. If the graph is plotted in terms of "true stress" and "true strain" the curve will always slope upwards and never reverse, as true stress is corrected for the decrease in cross-sectional area. Necking is not observed for materials loaded in compression. The peak stress on the engineering stress-strain curve is known as the "ultimate strength". After a period of necking, the material will rupture and the stored elastic energy is released as noise and heat. The stress on the material at the time of rupture is known as the tensile strength.

Ductile metals do not have a well defined yield point. The yield strength is typically defined by the "0.2% offset strain". The yield strength at 0.2% offset is determined by finding the intersection of the stress-strain curve with a line parallel to the initial slope of the curve and which intercepts the abscissa at 0.2%. A stress-strain curve typical of aluminum along with the 0.2% offset line is shown in the figure below.

[

1. Ultimate Strength
2. Yield strength
3. Proportional Limit Stress
4. Tensile strength
5. Offset Strain (typically 0.2%).]

Brittle materials such as concrete and carbon fiber do not have a yield point, and do not strain-harden which means that the ultimate strength and breaking strength are the same. A most unusual stress-strain curve is shown in the figure below. Typical brittle materials do not show any plastic deformation but fail while the deformation is elastic. One of the characteristics of a brittle failure is that the two broken parts can be reassembled to produce the same shape as the original component. A typical stress strain curve for a brittle material will be linear. Testing of several identical specimens will result in different failure stresses. The curve shown below would be typical of a brittle polymer tested at very slow strain rates at a temperature above its glass transition temperature. Some engineering ceramics show a small amount of ductile behaviour at stresses just below that causing failure but the initial part of the curve is a linear.

[

1. Ultimate Strength
2. Tensile strength.]

Tensile strength is measured in units of force per unit area. In the SI system, the units are newtons per square metre (N/m²) or pascals (Pa), with prefixes as appropriate. The non-metric units are pounds-force per square inch (lbf/in² or PSI). Engineers in North America usually use units of ksi which is a thousand psi. One MegaPascal is 145.037738 pounds-force per square inch.

The breaking strength of a rope is specified in units of force, such as newtons, without specifying the cross-sectional area of the rope. This is often loosely called tensile strength, but this is not a strictly correct use of the term.

In brittle materials such as rock, concrete, cast iron, or soil, tensile strength is negligible compared to the compressive strength and it is assumed zero for many engineering applications. Glass fibers have a tensile strength stronger than steel [http://www.fols.org/resources/faqDetail.cfm?ID=8] , but bulk glass usually does not. This is due to the Stress Intensity Factor associated with defects in the material. As the size of the sample gets larger, the size of defects also grows.In general, the tensile strength of a rope is always less than the tensile strength of its individual fibers.

Tensile strength can be defined for liquids as well as solids. For example, when a tree draws water from its roots to its upper leaves by transpiration, the column of water is pulled upwards from the top by capillary action, and this force is transmitted down the column by its tensile strength. Air pressure from below also plays a small part in a tree's ability to draw up water, but this alone would only be sufficient to push the column of water to a height of about ten metres, and trees can grow much higher than that. (See also cavitation, which can be thought of as the consequence of water being "pulled too hard".)

Typical tensile strengths

Some typical tensile strengths of some materials:
*Note: Multiwalled carbon nanotubes have the highest tensile strength of any material yet measured, with labs producing them at a tensile strength of 63 GPa, still well below their theoretical limit of 300 GPa. However as of 2004, no macroscopic object constructed of carbon nanotubes has had a tensile strength remotely approaching this figure, or substantially exceeding that of high-strength materials like Kevlar.
*Note: many of the values depend on manufacturing process and purity/composition.

(Source: A.M. Howatson, P.G. Lund and J.D. Todd, "Engineering Tables and Data" p41)

ee also

*Tension (mechanics)
*Toughness
*Deformation
*Tensile structure
*Universal Testing Machine
*Specific strength
*Strength of materials
*Ultimate failure

ources

* A.M. Howatson, P.G. Lund and J.D. Todd, "Engineering Tables and Data"
* Giancoli, Douglas. Physics for Scientists & Engineers Third Edition. Upper Saddle River: Prentice Hall, 2000.
* Köhler, T. and F. Vollrath. 1995. Thread biomechanics in the two orb-weaving spiders "Araneus diadematus" (Araneae, Araneidae) and" Uloboris walckenaerius" (Araneae, Uloboridae). Journal of Experimental Zoology 271:1-17.
* Edwards, Bradly C. "The Space Elevator: A Brief Overview" http://www.liftport.com/files/521Edwards.pdf
*T Follett "Life without metals"
*Min-Feng Yu et. al (2000), Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science 287, 637-640

References

* http://www.albarrie.com/Filtration/fil-basalt.html

External links

* [http://matse1.mse.uiuc.edu/~tw/metals/e.html Tensile Strength Test]
* [http://www.lns.cornell.edu/spr/2003-01/msg0047472.html January 2003 sci.physics thread on water tensile strength and trees]
* [http://stacks.iop.org/0022-3727/20/1080 Theory re the discrepancy in static vs dynamic measurements of water's tensile strength]
* [http://www.key-to-steel.com/Articles/Art43.htm Engineering Stress-strain Curve]
* [http://www.zwick.co.uk/links.php/#stress Systems for measuring tensile strength]


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Tensile strength — Tensile strength. См. Предел прочности на разрыв. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт Петербург, 2003 г.) …   Словарь металлургических терминов

  • tensile strength — n [U] technical the ability of steel or ↑concrete etc to bear pressure or weight without breaking …   Dictionary of contemporary English

  • tensile strength — noun uncount TECHNICAL the ability of something to not break when it is stretched a lot or when a lot of pressure is put on it …   Usage of the words and phrases in modern English

  • tensile strength —  Tensile Strength  (TS)  Предел прочности   Механическое напряжение, выше которого происходит разрушение материала. Поскольку при оценке прочности время нагружения образцов часто не превышает нескольких секунд от начала нагружения до момента… …   Толковый англо-русский словарь по нанотехнологии. - М.

  • tensile strength — ► NOUN ▪ the resistance of a material to breaking under tension …   English terms dictionary

  • tensile strength — n. resistance to lengthwise stress, measured (in force per unit of cross sectional area) by the greatest load pulling in the direction of length that a given substance can bear without tearing apart …   English World dictionary

  • tensile strength — the resistance of a material to longitudinal stress, measured by the minimum amount of longitudinal stress required to rupture the material. [1860 65] * * * Ratio of the maximum load a material can support without fracture when being stretched to …   Universalium

  • tensile strength —    The capability of a material to withstand the stress imposed upon it when it is stretched or extended. Rubber, nylon, and steel are materials noted for their varied capacities for tensile strength. Also see ductile …   Glossary of Art Terms

  • tensile strength — tempiamasis stipris statusas T sritis Standartizacija ir metrologija apibrėžtis Didžiausias tempimo įtempis, kuriam esant medžiaga suyra. atitikmenys: angl. tensile strength vok. Zugfestigkeit, f rus. прочность на растяжение, f pranc. résistance… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • tensile strength — atsparumas tempimui statusas T sritis fizika atitikmenys: angl. tensile strength vok. Zerreißfestigkeit, f; Zugfestigkeit, f rus. прочность на растяжение, f pranc. résistance à la traction, f …   Fizikos terminų žodynas

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”