Multilinear map

Multilinear map

In linear algebra, a multilinear map is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function

f\colon V_1 \times \cdots \times V_n \to W\text{,}

where V_1,\ldots,V_n and W\! are vector spaces (or modules), with the following property: for each i\!, if all of the variables but v_i\! are held constant, then f(v_1,\ldots,v_n) is a linear function of v_i\!.[1]

A multilinear map of two variables is a bilinear map. More generally, a multilinear map of k variables is called a k-linear map. If the codomain of a multilinear map is the field of scalars, it is called a multilinear form. Multilinear maps and multilinear forms are fundamental objects of study in multilinear algebra.

If all variables belong to the same space, one can consider symmetric, antisymmetric and alternating k-linear maps. The latter coincide if the underlying ring (or field) has a characteristic different from two, else the former two coincide.

Contents

Examples

Coordinate representation

Let

f\colon V_1 \times \cdots \times V_n \to W\text{,}

be a multilinear map between finite-dimensional vector spaces, where V_i\! has dimension d_i\!, and W\! has dimension d\!. If we choose a basis \{\textbf{e}_{i1},\ldots,\textbf{e}_{id_i}\} for each V_i\! and a basis \{\textbf{b}_1,\ldots,\textbf{b}_d\} for W\! (using bold for vectors), then we can define a collection of scalars A_{j_1\cdots j_n}^k by

f(\textbf{e}_{1j_1},\ldots,\textbf{e}_{nj_n}) = A_{j_1\cdots j_n}^1\,\textbf{b}_1 + \cdots +  A_{j_1\cdots j_n}^d\,\textbf{b}_d.

Then the scalars \{A_{j_1\cdots j_n}^k \mid 1\leq j_i\leq d_i, 1 \leq k \leq d\} completely determine the multilinear function f\!. In particular, if

\textbf{v}_i = \sum_{j=1}^{d_i} v_{ij} \textbf{e}_{ij}\!

for 1 \leq i \leq n\!, then

f(\textbf{v}_1,\ldots,\textbf{v}_n) = \sum_{j_1=1}^{d_1} \cdots \sum_{j_n=1}^{d_n} \sum_{k=1}^{d} A_{j_1\cdots j_n}^k v_{1j_1}\cdots v_{nj_n} \textbf{b}_k.

Relation to tensor products

There is a natural one-to-one correspondence between multilinear maps

f\colon V_1 \times \cdots \times V_n \to W\text{,}

and linear maps

F\colon V_1 \otimes \cdots \otimes V_n \to W\text{,}

where V_1 \otimes \cdots \otimes V_n\! denotes the tensor product of V_1,\ldots,V_n. The relation between the functions f\! and F\! is given by the formula

F(v_1\otimes \cdots \otimes v_n) = f(v_1,\ldots,v_n).


Multilinear functions on n×n matrices

One can consider multilinear functions, on an n×n matrix over a commutative ring K with identity, as a function of the rows (or equivalently the columns) of the matrix. Let A be such a matrix and ai, 1 ≤ in be the rows of A. Then the multilinear function D can be written as

D(A) = D(a_{1},\ldots,a_{n}) \,

satisfying

D(a_{1},\ldots,c a_{i} + a_{i}',\ldots,a_{n}) = c D(a_{1},\ldots,a_{i},\ldots,a_{n}) + D(a_{1},\ldots,a_{i}',\ldots,a_{n}) \,

If we let \hat{e}_j represent the jth row of the identity matrix we can express each row ai as the sum

a_{i} = \sum_{j=1}^n A(i,j)\hat{e}_{j}

Using the multilinearity of D we rewrite D(A) as


D(A) = D\left(\sum_{j=1}^n A(i,j)\hat{e}_{j}, a_2, \ldots, a_n\right)
       = \sum_{j=1}^n A(i,j) D(\hat{e}_{j},a_2,\ldots,a_n)

Continuing this substitution for each ai we get, for 1 ≤ in


D(A) = \sum_{1\le k_i\le n} A(1,k_{1})A(2,k_{2})\dots A(n,k_{n}) D(\hat{e}_{k_{1}},\dots,\hat{e}_{k_{n}})
where, since in our case  1 \le i \le n

 \sum_{1\le k_i \le n} = \sum_{1\le k_1 \le n} \ldots \sum_{1\le k_i \le n} \ldots \sum_{1\le k_n \le n} \,
as a series of nested summations.

Therefore, D(A) is uniquely determined by how D operates on \hat{e}_{k_{1}},\dots,\hat{e}_{k_{n}}.


Example

In the case of 2×2 matrices we get


D(A) = A_{1,1}A_{2,1}D(\hat{e}_1,\hat{e}_1) + A_{1,1}A_{2,2}D(\hat{e}_1,\hat{e}_2) + A_{1,2}A_{2,1}D(\hat{e}_2,\hat{e}_1) + A_{1,2}A_{2,2}D(\hat{e}_2,\hat{e}_2) \,

Where \hat{e}_1 = [1,0] and \hat{e}_2 = [0,1]. If we restrict D to be an alternating function then D(\hat{e}_1,\hat{e}_1) = D(\hat{e}_2,\hat{e}_2) = 0 and D(\hat{e}_2,\hat{e}_1) = -D(\hat{e}_1,\hat{e}_2) = -D(I). Letting D(I) = 1 we get the determinant function on 2×2 matrices:


D(A) = A_{1,1}A_{2,2} - A_{1,2}A_{2,1} \,

Properties

A multilinear map has a value of zero whenever one of its arguments is zero.

For n>1, the only n-linear map which is also a linear map is the zero function, see bilinear map#Examples.

See also

References

  1. ^ Lang. Algebra. Springer; 3rd edition (January 8, 2002)

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Multilinear algebra — In mathematics, multilinear algebra extends the methods of linear algebra. Just as linear algebra is built on the concept of a vector and develops the theory of vector spaces, multilinear algebra builds on the concepts of p vectors and… …   Wikipedia

  • Multilinear subspace learning — (MSL) aims to learn a specific small part of a large space of multidimensional objects having a particular desired property. It is a dimensionality reduction approach for finding a low dimensional representation with certain preferred… …   Wikipedia

  • Multilinear form — In multilinear algebra, a multilinear form is a map of the type where V is a vector space over the field K, that is separately linear in each its n variables.[1] For n = 2, i.e. only two variables, one calls ƒ a bilinear form. An important type… …   Wikipedia

  • Bilinear map — In mathematics, a bilinear map is a function of two arguments that is linear in each. An example of such a map is multiplication of integers.DefinitionLet V , W and X be three vector spaces over the same base field F . A bilinear map is a… …   Wikipedia

  • Exterior algebra — In mathematics, the exterior product or wedge product of vectors is an algebraic construction generalizing certain features of the cross product to higher dimensions. Like the cross product, and the scalar triple product, the exterior product of… …   Wikipedia

  • Tensor — For other uses, see Tensor (disambiguation). Note that in common usage, the term tensor is also used to refer to a tensor field. Stress, a second order tensor. The tensor s components, in a three dimensional Cartesian coordinate system, form the… …   Wikipedia

  • Hyperdeterminant — In algebra, the hyperdeterminant is a generalisation of the determinant. Whereas a determinant is a scalar valued function defined on an n x n square matrix, a hyperdeterminant is defined on a multidimensional array of numbers or hypermatrix.… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Fréchet derivative — In mathematics, the Fréchet derivative is a derivative defined on Banach spaces. Named after Maurice Fréchet, it is commonly used to formalize the concept of the functional derivative used widely in mathematical analysis, especially functional… …   Wikipedia

  • Trace diagram — In mathematics, trace diagrams are a graphical means of performing computations in linear and multilinear algebra. They can be represented as graphs with edges labeled by matrices. Without the matrix labels, they are equivalent to Penrose s… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”