Modularity theorem

Modularity theorem

In mathematics the modularity theorem (formerly called the Taniyama–Shimura–Weil conjecture and several related names) states that elliptic curves over the field of rational numbers are related to modular forms. Andrew Wiles proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's last theorem, and Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor extended his techniques to prove the full modularity theorem in 2001. The modularity theorem is a special case of more general conjectures due to Robert Langlands. The Langlands program seeks to attach an automorphic form or automorphic representation (a suitable generalization of a modular form) to more general objects of arithmetic algebraic geometry, such as to every elliptic curve over a number field. Most cases of these extended conjectures have not yet been proved.

Contents

Statement

The theorem states that any elliptic curve over Q can be obtained via a rational map with integer coefficients from the classical modular curve

X_0(N)\

for some integer N; this is a curve with integer coefficients with an explicit definition. This mapping is called a modular parametrization of level N. If N is the smallest integer for which such a parametrization can be found (which by the modularity theorem itself is now known to be a number called the conductor), then the parametrization may be defined in terms of a mapping generated by a particular kind of modular form of weight two and level N, a normalized newform with integer q-expansion, followed if need be by an isogeny.

The modularity theorem implies a closely related analytic statement: to an elliptic curve E over Q we may attach a corresponding L-series. The L-series is a Dirichlet series, commonly written

L(s, E) = \sum_{n=1}^\infty \frac{a_n}{n^s}.

The generating function of the coefficients an is then

f(q, E) = \sum_{n=1}^\infty a_n q^n.

If we make the substitution

q = e^{2 \pi i \tau}\

we see that we have written the Fourier expansion of a function f(τ,E) of the complex variable τ, so the coefficients of the q-series are also thought of as the Fourier coefficients of f. The function obtained in this way is, remarkably, a cusp form of weight two and level N and is also an eigenform (an eigenvector of all Hecke operators); this is the Hasse–Weil conjecture, which follows from the modularity theorem.

Some modular forms of weight two, in turn, correspond to holomorphic differentials for an elliptic curve. The Jacobian of the modular curve can (up to isogeny) be written as a product of irreducible Abelian varieties, corresponding to Hecke eigenforms of weight 2. The 1-dimensional factors are elliptic curves (there can also be higher dimensional factors, so not all Hecke eigenforms correspond to rational elliptic curves). The curve obtained by finding the corresponding cusp form, and then constructing a curve from it, is isogenous to the original curve (but not, in general, isomorphic to it).

History

Taniyama (1956) stated a preliminary (slightly incorrect) version of the conjecture at the 1955 international symposium on algebraic number theory in Tokyo and Nikko. Goro Shimura and Taniyama worked on improving its rigor until 1957. Weil (1967) rediscovered the conjecture, and showed that it would follow from the (conjectured) functional equations for some twisted L-series of the elliptic curve; this was the first serious evidence that the conjecture might be true. Weil also showed that the conductor of the elliptic curve should be the level of the corresponding modular form.

The conjecture attracted considerable interest when Frey (1986) suggested that the Taniyama–Shimura–Weil conjecture implies Fermat's Last Theorem. He did this by attempting to show that any counterexample to Fermat's Last Theorem would give rise to a non-modular elliptic curve. However, his argument was not complete. The extra condition which was needed to link Taniyama-Shimura-Weil to Fermat's Last Theorem was identified by Serre (1987) and became known as the epsilon conjecture. In the summer of 1986, Ribet (1990) proved the epsilon conjecture, thereby proving that the Taniyama–Shimura–Weil conjecture implied Fermat's Last Theorem. Wiles (1995), with some help from Richard Taylor, proved the Taniyama–Shimura–Weil conjecture for all semistable elliptic curves, which was strong enough to yield a proof of Fermat's Last Theorem.

The full Taniyama–Shimura–Weil conjecture was finally proved by Diamond (1996), Conrad, Diamond & Taylor (1999), and Breuil et al. (2001) who, building on Wiles' work, incrementally chipped away at the remaining cases until the full result was proved. The now fully proved conjecture became known as the modularity theorem.

Several theorems in number theory similar to Fermat's Last Theorem follow from the modularity theorem. For example: no cube can be written as a sum of two coprime n-th powers, n ≥ 3. (The case n = 3 was already known by Euler.)

References

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Modularity — Module redirects here. For other uses, see Module (disambiguation). Modularity is a general systems concept, typically defined as a continuum describing the degree to which a system’s components may be separated and recombined.[1] It refers to… …   Wikipedia

  • Fermat's Last Theorem — is the name of the statement in number theory that:: It is impossible to separate any power higher than the second into two like powers,or, more precisely:: If an integer n is greater than 2, then the equation a^n + b^n = c^n has no solutions in… …   Wikipedia

  • De Franchis theorem — In mathematics, the de Franchis theorem is one of a number of closely related statements applying to compact Riemann surfaces, or, more generally, algebraic curves, X and Y, in the case of genus g > 1. The simplest is that the automorphism… …   Wikipedia

  • Goro Shimura — Born 23 February 1930 (1930 02 23) (age 81) Hamamatsu, Japan Nationality …   Wikipedia

  • Birch and Swinnerton-Dyer conjecture — Millennium Prize Problems P versus NP problem Hodge conjecture Poincaré conjecture Riemann hypo …   Wikipedia

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Conjecture de Shimura-Taniyama-Weil — La conjecture de Shimura Taniyama Weil énonce que, pour toute courbe elliptique sur , il existe une forme modulaire de poids 2 pour un sous groupe de congruence Γ0(N), ayant même fonction L que la courbe elliptique. Une grande partie de cette… …   Wikipédia en Français

  • Riemann surface — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… …   Wikipedia

  • List of number theory topics — This is a list of number theory topics, by Wikipedia page. See also List of recreational number theory topics Topics in cryptography Contents 1 Factors 2 Fractions 3 Modular arithmetic …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.