Cyclotomic field

Cyclotomic field

In number theory, a cyclotomic field is a number field obtained by adjoining a complex primitive root of unity to Q, the field of rational numbers. The n-th cyclotomic field Qn) (with n > 2) is obtained by adjoining a primitive n-th root of unity ζn to the rational numbers.

The cyclotomic fields played a crucial role in the development of modern algebra and number theory because of their relation with Fermat's last theorem. It was in the process of his deep investigations of the arithmetic of these fields (for prime n) – and more precisely, because of the failure of unique factorization in their rings of integers – that Ernst Kummer first introduced the concept of an ideal number and proved his celebrated congruences.

Contents

Properties

A cyclotomic field is the splitting field of the polynomial

xn − 1

and therefore it is a Galois extension of the field of rational numbers. The degree of the extension

[Q(ζn):Q]

is given by φ(n) where φ is Euler's phi function. A complete set of Galois conjugates is given by { (ζn)a }, where a runs over the set of invertible residues modulo n (so that a is relative prime to n). The Galois group is naturally isomorphic to the multiplicative group

(Z/nZ)×

of invertible residues modulo n, and it acts on the primitive nth roots of unity by the formula

b: (ζn)a → (ζn)ab.

Relation with regular polygons

Gauss made early inroads in the theory of cyclotomic fields, in connection with the geometrical problem of constructing a regular polygon with a compass and straightedge. His surprising result that had escaped his predecessors was that a regular heptadecagon (with 17 sides) could be so constructed. More generally, if p is a prime number, then a regular p-gon can be constructed if and only if p is a Fermat prime. The geometric problem for a general n can be reduced to the following question in Galois theory: can the nth cyclotomic field be built as a sequence of quadratic extensions?

Relation with Fermat's Last Theorem

A natural approach to proving Fermat's Last Theorem is to factor the binomial xn + yn, where n is an odd prime, appearing in one side of Fermat's equation

xn + yn = zn

as follows:

xn + yn = (x + y) (x + ζy) ... (x + ζn−1y).

Here x and y are ordinary integers, whereas the factors are algebraic integers in the cyclotomic field Qn). If unique factorization of algebraic integers were true, then it could have been used to rule out the existence of nontrivial solutions to Fermat's equation.

Several attempts to tackle Fermat's Last Theorem proceeded along these lines, and both Fermat's proof for n = 4 and Euler's proof for n = 3 can be recast in these terms. Unfortunately, the unique factorization fails in general – for example, for n = 23 – but Kummer found a way around this difficulty. He introduced a replacement for the prime numbers in the cyclotomic field Qp), expressed the failure of unique factorization quantitatively via the class number hp and proved that if hp is not divisible by p (such numbers p are called regular primes) then Fermat's theorem is true for the exponent n = p. Furthermore, he gave a criterion to determine which primes are regular and using it, established Fermat's theorem for all prime exponents p less than 100, with the exception of the irregular primes 37, 59, and 67. Kummer's work on the congruences for the class numbers of cyclotomic fields was generalized in the twentieth century by Iwasawa in Iwasawa theory and by Kubota and Leopoldt in their theory of p-adic zeta functions.

See also

References


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Cyclotomic unit — In mathematics, a cyclotomic unit is a unit of an algebraic number field of the form (ζn − 1)/(ζ − 1) for ζ a root of unity, or more generally a unit that can be written as a product of these and a root of unity. The… …   Wikipedia

  • Cyclotomic polynomial — In algebra, the nth cyclotomic polynomial, for any positive integer n, is the monic polynomial: where the product is over all nth primitive roots of unity ω in a field, i.e. all the complex numbers ω of order n. Contents 1 Properties …   Wikipedia

  • Glossary of field theory — Field theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject. (See field theory (physics) for the unrelated field theories in physics.) Definition of a field A field is a commutative ring… …   Wikipedia

  • Quadratic field — In algebraic number theory, a quadratic field is an algebraic number field K of degree two over Q. It is easy to show that the map d ↦ Q(√d) is a bijection from the set of all square free integers d ≠ 0, 1 to the set of… …   Wikipedia

  • Cubic field — In mathematics, specifically the area of algebraic number theory, a cubic field is an algebraic number field of degree three. Contents 1 Definition 2 Examples 3 Galois closure 4 …   Wikipedia

  • Discriminant of an algebraic number field — A fundamental domain of the ring of integers of the field K obtained from Q by adjoining a root of x3 − x2 − 2x + 1. This fundamental domain sits inside K ⊗QR. The discriminant of K is 49 = 72.… …   Wikipedia

  • Algebraic number field — In mathematics, an algebraic number field (or simply number field) F is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector… …   Wikipedia

  • CM-field — In mathematics, a CM field is a particular type of number field K , so named for a close connection to the theory of complex multiplication. Another name used is J field . Specifically, K is a totally imaginary quadratic extension of a totally… …   Wikipedia

  • Algebraically closed field — In mathematics, a field F is said to be algebraically closed if every polynomial in one variable of degree at least 1, with coefficients in F , has a root in F . ExamplesAs an example, the field of real numbers is not algebraically closed,… …   Wikipedia

  • Class field theory — In mathematics, class field theory is a major branch of algebraic number theory that studies abelian extensions of number fields. Most of the central results in this area were proved in the period between 1900 and 1950. The theory takes its name… …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.