Abc conjecture


Abc conjecture

The abc conjecture is a conjecture in number theory. It was first proposed by Joseph Oesterlé and David Masser in 1985. The conjecture is stated in terms of simple properties of three integers, one of which is the sum of the other two. Although there is no obvious attack on the problem, it has already become well known for the number of interesting consequences it entails.unsolved|mathematics
For every "ε" > 0, does there exist a "K" > 0 such that for every triple of coprime positive integers "a" + "b" "c", with product "d" of their distinct prime factors, "a"+"b"+"c" < "Kd"1 + "ε"?

Formulation

For positive integer "n", the radical of "n", denoted

:rad("n"),

is the square-free product of the distinct prime factors of "n", that is, the product of the prime factors of "n", never raising a factor to a power greater than 1. For example, rad(600) = rad(23·3·52) = 2·3·5 = 30.

The abc conjecture states that, for any "ε" > 0, there exists a finite "Kε" such that, for all triples of coprime positive integers "a", "b", and "c" satisfying "a" + "b" = "c",

:c < K_varepsilon, operatorname{rad}(abc)^{1+varepsilon}.

ome consequences

The conjecture has not been proven, but it has a large number of interesting consequences. These include both known results, and conjectures for which it gives a conditional proof.
* Thue–Siegel–Roth theorem (proven by Klaus Roth)
* Fermat's Last Theorem for all sufficiently large exponents (proven in general by Andrew Wiles)
* The Mordell conjecture (proven by Gerd Faltings)

* The Erdős–Woods conjecture except for a finite number of counterexamples
* The existence of infinitely many non-Wieferich primes
* The weak form of Hall's conjecture
* The L function "L"("s",(−"d"/.)) formed with the Legendre symbol, has no Siegel zero (this consequence actually requires a uniform version of the abc conjecture in number fields, not only the abc conjecture as formulated above for rational integers)
* "P"("x") has only finitely many perfect powers for integral "x" for "P" a polynomial with at least three simple zeros. [http://www.math.uu.nl/people/beukers/ABCpresentation.pdf]
* A generalization of Tijdeman's theorem
* It is equivalent to the Granville-Langevin conjecture
* It is equivalent to the modified Szpiro conjecture.

While the first group of these have now been proven, the abc conjecture itself remains of interest, because of its numerous links with deep questions in number theory.

Refined forms

A stronger inequality proposed in 1996 by Alan Baker states that in the inequality, one can replace rad("abc") by

:&epsilon;−&omega;rad("abc"),

where ω is the total number of distinct primes dividing "a", "b" and "c". A related conjecture of Andrew Granville states that on the RHS we could also put

:O(rad("abc") &Theta;(rad("abc"))

where Θ("n") is the number of integers up to "n" divisible only by primes dividing "n".

Partial results

1986, C.L. Stewart and R. Tijdeman:

:c < exp{(K_1 operatorname{rad}(abc)^{15}) },

1991, C.L. Stewart and Kunrui Yu:

:c < exp{ (K_2 operatorname{rad}(abc)^{2/3+varepsilon}) },

1996, C.L. Stewart and Kunrui Yu:

:c < exp{ (K_3 operatorname{rad}(abc)^{1/3+varepsilon}) },

where c is larger than 2, "K"1 is an absolute constant, and "K"2 and "K"3 are positive effectively computable constants in terms of ε.

Triples with small radical

The condition that ε &gt; 0 is necessary for the truth of the conjecture, as there exist infinitely many triples "a", "b", "c" with rad("abc") &lt; "c". For instance, such a triple may be taken as:"a" = 1:"b" = 26"n" - 1:"c" = 26"n".As "a" and "c" together contribute only a factor of two to the radical, while "b" is divisible by 9, rad("abc") &lt; 2"c"/3 for these examples. By replacing the exponent 6"n" by other exponents forcing "c" to have larger square factors, the ratio between the radical and "c" may be made arbitrarily large. Another triple with a particularly small radical was found by Eric Reyssat: [Lando and Zvonkin, p.137] :"a" = 2::"b" = 310 109 = 6436341:"c" = 235 = 6436343:rad("abc") = 15042.

Grid-computing program

In 2006, the Mathematics Department of Leiden University in the Netherlands, together with the Dutch Kennislink science institute, launched the ABC@Home project, a grid computing system which aims to discover additional triples "a", "b", "c" with rad("abc") &lt; "c". Although no finite set of examples or counterexamples can resolve the abc conjecture, it is hoped that patterns in the triples discovered by this project will lead to insights about the conjecture and about number theory more generally.

Notes

References

*
*

External links

* [http://abcathome.com/ ABC@home] Distributed Computing project called ABC@Home.
* [http://bit-player.org/2007/easy-as-abc Easy as ABC] : Easy to follow, detailed explanation by Brian Hayes.
*
* Abderrahmane Nitaj's [http://www.math.unicaen.fr/~nitaj/abc.html ABC conjecture home page]
* Bart de Smit's [http://www.math.leidenuniv.nl/~desmit/abc/ ABC Triples webpage]
* http://www.math.columbia.edu/~goldfeld/ABC-Conjecture.pdf
* [http://www.maa.org/mathland/mathtrek_12_8.html The amazing ABC conjecture]
* [http://www.hcs.harvard.edu/hcmr/issue1/elkies.pdf The ABC's of Number Theory] by Noam D. Elkies


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • abc conjecture — The abc conjecture (also known as Oesterlé–Masser conjecture) is a conjecture in number theory, first proposed by Joseph Oesterlé and David Masser in 1985. The conjecture is stated in terms of three positive integers, a, b and c (whence comes the …   Wikipedia

  • Conjecture Abc — La conjecture abc est une conjecture en théorie des nombres. Elle a été formulée pour la première fois par Joseph Oesterlé et David Masser en 1985. Si elle était vérifiée, elle permettrait de démontrer aisément le théorème de Fermat Wiles, entre… …   Wikipédia en Français

  • ABC@Home — Bereich: Mathematik Ziel: Finden von Tripeln für die abc Vermutung Betreiber: Math. Institut der Universität Leiden Land: Niederlande Plattform: BOINC Website …   Deutsch Wikipedia

  • abc-гипотеза — (гипотеза Эстерле Массера)  утверждение в теории чисел, сформулированное независимо Джозефом Эстерле в 1988 году[1] и Дэвидом Массером в 1985 году.[2] В августе 2012 года японский математик Синъити Мотидзуки заявил, что ему удалось доказать… …   Википедия

  • ABC — may refer to:Broadcasting media* American Broadcasting Company, an American television network ** ABC Radio, an American radio network, formerly owned by the American Broadcasting Company * Australian Broadcasting Corporation, an Australian… …   Wikipedia

  • ABC@Home — is an educational and non profit network computing project finding abc triples related to the abc conjecture. Computing platform Using the Berkeley Open Infrastructure for Network Computing (BOINC) distributed computing platform. * The ABC@Home… …   Wikipedia

  • abc-Vermutung — Die abc Vermutung ist eine 1985 von Joseph Oesterlé und David Masser aufgestellte mathematische Vermutung. Dabei geht es um eine Eigenschaft von Tripeln zueinander teilerfremder natürlicher Zahlen, bei denen die dritte die Summe der beiden… …   Deutsch Wikipedia

  • Conjecture abc — La conjecture abc est une conjecture en théorie des nombres. Elle a été formulée pour la première fois par Joseph Oesterlé et David Masser en 1985. C est « le problème non résolu le plus important en analyse diophantienne[1] » car si… …   Wikipédia en Français

  • Abc-Vermutung — Die abc Vermutung ist eine 1985 von Joseph Oesterlé und David Masser aufgestellte mathematische Vermutung. Dabei geht es um eine Eigenschaft von Tripeln von untereinander teilerfremden natürlichen Zahlen, bei denen die dritte die Summe der beiden …   Deutsch Wikipedia

  • Abc@home — est un projet dont le but est de préciser la conjecture abc. Ce projet a été initié par la faculté de mathématiques de l université de Leyde (Pays Bas). Sommaire 1 Logiciel et ordinateurs 2 Voir aussi 2.1 Articles connexes …   Wikipédia en Français


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.