Differentiable function

Differentiable function
A differentiable function
The absolute value function is not differentiable at x = 0.

In calculus (a branch of mathematics), a differentiable function is a function whose derivative exists at each point in its domain. The graph of a differentiable function must have a non-vertical tangent line at each point in its domain. As a result, the graph of a differentiable function must be relatively smooth, and cannot contain any breaks, bends, or cusps, or any points with a vertical tangent.

More generally, if x0 is a point in the domain of a function ƒ, then ƒ is said to be differentiable at x0 if the derivative ƒ′(x0) is defined. This means that the graph of ƒ has a non-vertical tangent line at the point (x0, ƒ(x0)), and therefore cannot have a break, bend, or cusp at this point.

Contents

Differentiability and continuity

The Weierstrass function is continuous, but is not differentiable at any point.

If ƒ is differentiable at a point x0, then ƒ must also be continuous at x0. In particular, any differentiable function must be continuous at every point in its domain. The converse does not hold: a continuous function need not be differentiable. For example, a function with a bend, cusp, or vertical tangent may be continuous, but fails to be differentiable at the location of the anomaly.

Most functions which occur in practice have derivatives at all points or at almost every point. However, a result of Stefan Banach states that the set of functions which have a derivative at some point is a meager set in the space of all continuous functions.[1] Informally, this means that differentiable functions are very atypical among continuous functions. The first known example of a function that is continuous everywhere but differentiable nowhere is the Weierstrass function.

Differentiability classes

A function ƒ is said to be continuously differentiable if the derivative ƒ′(x) exists, and is itself a continuous function. Though the derivative of a differentiable function never has a jump discontinuity, it is possible for the derivative to have an essential discontinuity. For example, the function

f(x) \;=\; \begin{cases} x^2\sin (1/x) & \text{if }x \ne 0 \\ 0 & \text{if }x=0\end{cases}

is differentiable at 0 (with the derivative being 0), but the derivative is not continuous at this point.

Sometimes continuously differentiable functions are said to be of class C1. A function is of class C2 if the first and second derivative of the function both exist and are continuous. More generally, a function is said to be of class Ck if the first k derivatives ƒ′(x), ƒ″(x), ..., ƒ(k)(x) all exist and are continuous.

Differentiability in higher dimensions

A function f: RmRn is said to be differentiable at a point x0 if there exists a linear map J: RmRn such that

\lim_{\mathbf{h}\to \mathbf{0}} \frac{\mathbf{f}(\mathbf{x_0}+\mathbf{h}) - \mathbf{f}(\mathbf{x_0}) - \mathbf{J}(\mathbf{x_0})\mathbf{h}}{\| \mathbf{h} \|} = \mathbf{0}.

If a function is differentiable at x0, then all of the partial derivatives must exist at x0, in which case the linear map J is given by the Jacobian matrix.

Note that existence of the partial derivatives (or even all of the directional derivatives) does not guarantee that a function is differentiable at a point. For example, the function ƒ: R2R defined by

f(x,y) = \begin{cases}y & \text{if }y \ne x^2 \\ 0 & \text{if }y = x^2\end{cases}

is not differentiable at (0, 0), but all of the partial derivatives and directional derivatives exist at this point. For a continuous example, the function

f(x,y) = \begin{cases}y^3/(x^2+y^2) & \text{if }(x,y) \ne (0,0) \\ 0 & \text{if }(x,y) = (0,0)\end{cases}

is not differentiable at (0, 0), but again all of the partial derivatives and directional derivatives exist.

It is known that if the partial derivatives of a function all exist and are continuous in a neighborhood of a point, then the function must be differentiable at that point, and is in fact of class C1.

Differentiability in complex analysis

In complex analysis, any function that is complex-differentiable in a neighborhood of a point is called holomorphic. Such a function is necessarily infinitely differentiable, and in fact analytic.

Differentiable functions on manifolds

If M is a differentiable manifold, a real or complex-valued function ƒ on M is said to be differentiable at a point p if it is differentiable with respect to some (or any) coordinate chart defined around p. More generally, if M and N are differentiable manifolds, a function ƒ: M → N is said to be differentiable at a point p if it is differentiable with respect to some (or any) coordinate charts defined around p and ƒ(p).

See also

References

  1. ^ Banach, S. (1931). "Uber die Baire'sche Kategorie gewisser Funktionenmengen". Studia. Math. (3): 174–179. . Cited by Hewitt, E and Stromberg, K (1963). Real and abstract analysis. Springer-Verlag. Theorem 17.8. 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Differentiable manifold — A nondifferentiable atlas of charts for the globe. The results of calculus may not be compatible between charts if the atlas is not differentiable. In the middle chart the Tropic of Cancer is a smooth curve, whereas in the first it has a sharp… …   Wikipedia

  • differentiable — [dif΄ər en′shē ə bəl, dif΄ər enshə bəl] adj. 1. open to differentiation 2. Math. designating or of a function which has a derivative at the point in question …   English World dictionary

  • Function (mathematics) — f(x) redirects here. For the band, see f(x) (band). Graph of example function, In mathematics, a function associates one quantity, the a …   Wikipedia

  • Function composition — For function composition in computer science, see function composition (computer science). g ∘ f, the composition of f and g. For example, (g ∘ f)(c) = #. In mathematics, function composition is the application of one function to the resul …   Wikipedia

  • differentiable — adjective /ˌdɪf.ə(ɹ)ˈɛn.ʃə.bəl/ a) Having a derivative, said of a function whose domain and codomain are manifolds. b) able to be differentiated, e.g. because they appear different See Also: differentiability …   Wiktionary

  • Weierstrass function — may also refer to the Weierstrass elliptic function ( ) or the Weierstrass sigma, zeta, or eta functions. Plot of Weierstrass Function over the interval [−2, 2]. Like fractals, the function exhibits self similarity: every zoom (red circle)… …   Wikipedia

  • Smooth function — A bump function is a smooth function with compact support. In mathematical analysis, a differentiability class is a classification of functions according to the properties of their derivatives. Higher order differentiability classes correspond to …   Wikipedia

  • Convex function — on an interval. A function (in black) is convex if and only i …   Wikipedia

  • Inverse function theorem — In mathematics, specifically differential calculus, the inverse function theorem gives sufficient conditions for a function to be invertible in a neighborhood of a point in its domain. The theorem also gives a formula for the derivative of the… …   Wikipedia

  • Non-analytic smooth function — In mathematics, smooth functions (also called infinitely differentiable functions) and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”