diagonalizable
diagonalizable \diagonalizable\ adj. (Math.) able to be diagonalized; -- of a matrix. [PJC]

The Collaborative International Dictionary of English. 2000.

### Look at other dictionaries:

• diagonalizable — adjective see diagonalize …   New Collegiate Dictionary

• diagonalizable — di·ag·o·nal·iz·able …   English syllables

• diagonalizable — adjective capable of being transformed into a diagonal matrix (Freq. 14) • Pertains to noun: ↑diagonal matrix • Topics: ↑mathematics, ↑math, ↑maths * * * adjective see diagonalize …   Useful english dictionary

• Diagonalizable matrix — In linear algebra, a square matrix A is called diagonalizable if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P such that P −1AP is a diagonal matrix. If V is a finite dimensional vector space, then a linear …   Wikipedia

• Diagonalizable group — In mathematics, an affine group is said to be diagonalizable if it is isomorphic to a subgroup of Dn, the group of diagonal matrices. A diagonalizable group defined over k is said to split over k or k split if the isomorphism is defined over k.… …   Wikipedia

• Matriz diagonalizable — En álgebra lineal una matriz cuadrada A se dice que es diagonalizable si es semejante a una matriz diagonal, es decir, si mediante un cambio de base puede reducirse a una forma diagonal. En este caso, la matriz podrá descomponerse de la forma A …   Wikipedia Español

• Eigenvalues and eigenvectors — For more specific information regarding the eigenvalues and eigenvectors of matrices, see Eigendecomposition of a matrix. In this shear mapping the red arrow changes direction but the blue arrow does not. Therefore the blue arrow is an… …   Wikipedia

• Theorems and definitions in linear algebra — This article collects the main theorems and definitions in linear algebra. Vector spaces A vector space( or linear space) V over a number field² F consists of a set on which two operations (called addition and scalar multiplication, respectively) …   Wikipedia

• Forma canónica de Jordan — Saltar a navegación, búsqueda En álgebra lineal, la forma canónica de Jordan es la forma de la matriz de un endomorfismo de espacios vectoriales en cierta base asociada a la descomposición en suma directa de subespacios invariantes bajo dicho… …   Wikipedia Español