bicircular quartics
Anallagmatic An`al*lag*mat"ic, a. [Gr. ?; 'an priv. + ? a change.] (Math.) Not changed in form by inversion. [1913 Webster]

{Anallagmatic curves}, a class of curves of the fourth degree which have certain peculiar relations to circles; -- sometimes called {bicircular quartics}.

{Anallagmatic surfaces}, a certain class of surfaces of the fourth degree. [1913 Webster]


The Collaborative International Dictionary of English. 2000.

Look at other dictionaries:

  • Circular algebraic curve — In geometry, a circular algebraic curve is a type of plane algebraic curve determined by an equation F(x, y) = 0, where F is a polynomial with real coefficients and the highest order terms of F form a polynomial divisible by… …   Wikipedia

  • Anallagmatic — An al*lag*mat ic, a. [Gr. ?; an priv. + ? a change.] (Math.) Not changed in form by inversion. [1913 Webster] {Anallagmatic curves}, a class of curves of the fourth degree which have certain peculiar relations to circles; sometimes called… …   The Collaborative International Dictionary of English

  • Anallagmatic curves — Anallagmatic An al*lag*mat ic, a. [Gr. ?; an priv. + ? a change.] (Math.) Not changed in form by inversion. [1913 Webster] {Anallagmatic curves}, a class of curves of the fourth degree which have certain peculiar relations to circles; sometimes… …   The Collaborative International Dictionary of English

  • Anallagmatic surfaces — Anallagmatic An al*lag*mat ic, a. [Gr. ?; an priv. + ? a change.] (Math.) Not changed in form by inversion. [1913 Webster] {Anallagmatic curves}, a class of curves of the fourth degree which have certain peculiar relations to circles; sometimes… …   The Collaborative International Dictionary of English

  • Бициркулярная кривая — специально Б. к. 4 го порядка есть такая кривая, которая имеет две двойные точки, совпадающие с двумя бесконечно удаленными мнимыми циклическими точками. Теория этих кривых разработана более, чем других кривых 4 го порядка. См. Cazey, On… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”